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Abstract
We study information aggregation when n bidders choose, based on their

private information, between two concurrent common-value auctions. There

are ks identical objects on sale through a uniform price auction in market

s and there are an additionally kr objects on auction in market r, which

is identical to market s except for a positive reserve price. The reserve

price in market r implies that information is not aggregated in this market.

Moreover, if the object-to-bidder ratio in market s exceeds a certain cutoff,

then information is not aggregated in market s either. Conversely, if the

object-to-bidder ratio is less than this cutoff, then information is aggregated

in market s as the market grows arbitrarily large. Our results demonstrate

how frictions in one market can disrupt information aggregation in a linked,

frictionless market because of the pattern of market selection by imperfectly

informed bidders.
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1. Introduction

Consider a market where ks identical common-value objects of unknown value
are sold to n bidders, each with unit demand. The sale is conducted through a
sealed-bid auction where each of the highest ks bidders receives an object and pays
a uniform price equal to the highest losing bid. Each object’s common value (V )
is equal to one in the good state and zero in the bad state. In such an auction, if
each bidder has an independent signal about the unknown value of the object, then
the auction’s equilibrium price converges to the object’s true value as the number
of objects and the number of bidders grow arbitrarily large (see Pesendorfer and
Swinkels (1997)). Therefore, the auction price reveals the unknown value of the
object and thus aggregates all relevant information dispersedly held by the bidders.

Most previous work on auctions takes the distribution of types that bid in the
auction as exogenously given.1 Yet, in many instances, bidders strategically de-
cide whether to trade in a particular market after weighing their alternatives. In
other words, the bidder distribution is endogenously determined jointly by the set
of available alternatives and the bidders’ expectations about the relative attrac-
tiveness of these alternatives. Our focus in this paper is an environment where
bidders choose, based on their private information, between the auction (market
s) and an outside option (market r). This framework allows us to highlight the
interplay between self-selection into an auction, bidding behavior in the auction,
and the information content of prices.

Market r, which serves as the outside option for market s, is a uniform-price
auction with a reserve price c > 0 where there are an additional nr = kr units of
the same object for sale.2 If the object-to-bidder ratio in market r is sufficiently
large, then each bidder can purchase an object at a fixed price equal to c > 0. In
this case, the payoff from choosing the outside option is exogenously determined
by the reserve price c. Otherwise, the attractiveness of the outside option is
endogenously determined by the bidders that select market r together with the
reserve price c.

Our main result identifies when frictions in market r, resulting from the positive
reserve price, disrupts information aggregation also in the frictionless market s.
In particular, we show that there is no symmetric equilibrium that aggregates
information in either market if the object-to-bidder ratio in market s exceeds a

1Papers by Lauermann and Wolinsky (2017) and Murto and Valimaki (2014) are notable
exceptions.

2The reserve price has various interpretations: (1) It is a reserve price set by a single auc-
tioneer, (2) The auction is comprised of kr nonstrategic sellers and the reservation value (or the
cost) for these sellers is equal to c; (3) It is a government/regulator imposed minimum price.
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certain cutoff ̄. This cutoff depends on the reserve price, the signal structure,
and the object-to-bidder ratio in market r. If, on the other hand, the object-to-
bidder ratio in market s is less than ̄, then information is aggregated in market
s. Importantly, our result implies that information aggregation can fail in both
markets under imperfect information even in circumstances where information is
aggregated in both markets under complete information. We provide intuition for
these findings using an illustrative example further below.

Previous work on information aggregation mainly focused on homogeneous (or
highly correlated) objects that trade in a single centralized, frictionless auction
market. However, such a centralized market is an exception rather than the rule.
Fragmentation, the disperse trading of the same security in multiple markets, is
commonplace: Many stocks listed on the New York Stock Exchange trade concur-
rently on regional exchanges (see Hasbrouck (1995)). Investors, who participate
in a primary treasury bond auction, could purchase a bond with similar cashflow
characteristics from the secondary market. Labor markets are linked but also
segmented according to industry, geography, and skill. Buyers in the market for
aluminum or steel can choose between the London Metal Exchange or the New
York Mercantile Exchange. Such fragmented markets and exchanges also differ
in structure, rules and regulations. In particular, markets are heterogeneous in
terms of the frictions that participants face. The results that we present in this
paper suggest that selection into markets can have important implications for the
information content of prices, especially when individuals choose between markets
that differ in terms of institutional detail and therefore frictions. In particular,
we demonstrate how frictions can disrupt information aggregation not only in the
market with frictions but also in frictionless, substitute markets.

1.1. An Illustrative Example. Recall that bidders choose, based on their
private information, between market s where there are ns objects on auction and
market r where there are an additional nr objects on auction. There is a positive
reserve price c > 0 in market r while there is no reserve price in market s. For this
example, assume that r +s < 1 and further suppose that each bidder receives a
private signal that perfectly reveals the value of the object with probability 1� g

and receives an uninformative signal with the remaining probability g 2 [0, 1]. A
bidder who receives the uninformative signal believes that V = 1 with probability
1/2 while a bidder who receives the perfectly revealing signal knows the object’s
true value.

As a first benchmark suppose that r = 0, i.e., suppose that there is only one
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active market. In this case, it is innocuous to assume that all bidders participate
in market s because a non-participating bidder’s payoff is equal to zero in both
states. However, if all bidders participate in market s, then Pesendorfer and
Swinkels (1997)’s analysis implies that the auction price in market s converges to
1 and 0 in state V = 1 and V = 0, respectively, as the number of bidders n and
the number of object ns grow arbitrarily large for any g < 1. In other words,
if r = 0, then information is aggregated because the auction price in market s

converges to the object’s value in each state.
As a second benchmark assume that r > 0 and suppose that all bidders

receive perfectly informative signals (g = 0). In this benchmark, there is a unique
equilibrium for each n and information is again aggregated. In state V = 0 all
bidders bid zero in auction s because there is a positive reserve price in market
r. Therefore, the price in state V = 0 is equal to zero and c in markets s and r,
respectively.3 In state V = 1, the bidders randomize between the two auctions
and bid one in the auction that they choose.4 Since the bidders randomize, they
are indifferent between the two markets in equilibrium. Moreover, the facts that
all bidders bid one and r + s < 1 together imply that the price in one of the
two markets must converge to one. Since the bidders are indifferent between the
two markets, the price in state V = 1 must converge to one in both markets.
Therefore, the auction price in market s converges to value and perfectly reveals
the state.

In contrast to the two benchmarks, we will now argue that price cannot con-
verge to value in market s if there are sufficiently many uninformed bidders.5 For
this argument, we will assume that 1 � g < r and c > 1/2. On the way to a
contradiction, assume that price converges to value in auction s. No uninformed
bidder and no bidder who knows that the state is V = 0 would bid in market r

in equilibrium because the price in this market is at least c > 1/2 in both states.
Consider a bidder who knows that the state is V = 1. This bidder’s payoff from
participating in auction s converges to zero because the auction price converges to
one in state V = 1 by our initial assumption. The price in market r converges to
c in both states because 1� g < r and because only the informed bidders select
market r. Therefore, any informed bidder will opt for market r in state V = 1 for

3In the auction that we study, if there are fewer bidders than objects, then the price is equal
to the reserve price.

4Bidders bid their value in the auctions since the auctions are ks+1 (or kr+1) price auctions.
5A third benchmark that comes to mind is one where the reserve price c in market r is also

equal to zero. In this case, price converges to value in both markets along every equilibrium
sequence.
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sufficiently large n. However, if no bidder other than the uninformed bidders sub-
mit nontrivial bids that exceed zero in market s, then all the uninformed bidders
would bid 1/2, i.e., their valuation for the object. Thus, the price cannot converge
to one in state V = 1, contradicting our initial assumption.

This example highlights the main tension between type dependent market se-
lection and information aggregation. In order for information to be aggregated
in market s, informed bidders must choose this market in both states. However,
if information is aggregated, then no informed bidder would choose market s in
state V = 1 because they can obtain an object for a price equal to c in market r.
We further discuss this example in section 4.

1.2. Relation to the Literature. We make two main contributions to the
literature on information aggregation in multi-object common-value auctions. (1)
We are the first to study bidding behavior in a multi-object common-value auction
where bidders have outside options and the distribution of types is endogenously
determined. (2) In this context, we highlight a new mechanism, based on self-
selection, that can lead to the failure of information aggregation.

The model that we study is closest to Pesendorfer and Swinkels (1997).6 Their
paper argued that prices converge to the true value of a common-value object in
all symmetric equilibria if and only if both the number of objects and the number
of bidders who are not allocated an object grow without bound (double-largeness).
In contrast, we show that information aggregation can fail if bidders have access
to an outside option even when the double-largeness condition is satisfied.

Our paper is also related to recent work on single-unit common-value auctions
by Lauermann and Wolinsky (2017) and Murto and Valimaki (2014). The novel
feature of Lauermann and Wolinsky (2017)’s model is that the auctioneer knows
the value of the object but must solicit bidders for the auction, and soliciting
bidders is costly. Therefore, the number of bidders in the auction is endogenously
determined by the auctioneer. Our paper differs from Lauermann and Wolinsky
(2017) because: (1) We study a multi-unit multi-market auction, while they study
a single-object single-market auction, and Pesendorfer and Swinkels (1997)’s anal-
ysis implies that the information aggregation properties of a multi-unit auctions

6There is extensive work on information aggregation by prices in various contexts. For ex-
ample, see Wilson (1977) for common-value, uniform-price auctions with one object for sale;
Pesendorfer and Swinkels (2000) for mixed private, common-value auctions; Reny and Perry
(2006) and Cripps and Swinkels (2006) for large double auctions; Vives (2011) and Rostek and
Weretka (2012) for markets for divisible objects; and Wolinsky (1990), Golosov et al. (2014), Os-
trovsky (2012), Lauermann and Wolinsky (2015), and Lambert et al. (2018) for search markets
and markets with dynamic trading.
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differ substantially from the information aggregation properties of an auction with
a single object. (2) In our model the distribution of types is determined by the par-
ticipation decision of the bidders, while in their paper the auctioneer’s solicitation
strategy determines the number of bidders. This implies that in our model par-
ticipation decisions are type dependent, while in theirs they are type independent
but state dependent. In Murto and Valimaki (2014), potential bidders must pay
a cost to participate in the auction. This creates type-dependent participation,
as in our model. However, in contrast to this paper, they study a single-object,
single-market auction and their emphasis is on characterizing equilibria rather
than information aggregation.

Lauermann and Wolinsky (2017) and Atakan and Ekmekci (2014) also present
models where information aggregation fails in a large common-value auction. In
both of these papers, information aggregation fails because there is an atom in
the bid distribution and the auction price is equal to this atom with positive
probability in both states of the world. In this paper, information aggregation
can fail even when there are no atoms in the bid distribution. For instance, in the
illustrative example information aggregation fails in market s because the same
set of types determine the price and the limit-price distribution is continuous,
atomless, and increasing over the unit interval, in both states.

2. Preliminaries

We study an auction where n bidders choose between three mutually exclusive
alternatives: 1) A bidder can bid in market s; 2) She can bid in market r; or
3) She can choose neither and receive a payoff equal to zero. A bidder does not
observe anything beyond her private signal when making this choice.

Market s is a common-value, sealed-bid, uniform-price auction for dsne =

ks identical objects where s 2 (0, 1) is the object-to-bidder ratio.7 There are
dnre = kr additional objects on auction in market r and the auction format in
market r is identical to market s except for a reserve price c 2 (0, 1). The price in
market s is equal to the ks + 1st highest bid in market s (the highest losing bid)
if there are more bidders than objects and equal to zero, otherwise. The price in
market r is equal to the maximum of c and the highest losing bid in market r if
there are more bidders than objects and equal to c, otherwise. Ties are broken
uniformly and randomly.

Each bidder has unit demand and puts value V on a single object, and value 0

on any further objects. The km highest bidders in auction m 2 {r, s} are allocated
7The smallest integer not less than x is denoted by dxe.
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objects. Thus, a bidder who is allocated an object at price P enjoys utility V �P

while a bidder who fails to win an object receives a payoff equal to zero.
The common value V (or the state of the world) is a random variable with

typical realizations v 2 {0, 1}. The common prior is equal to 1/2.8 Before select-
ing a market, each bidder receives a signal ✓ 2 [0, 1] according to a continuous,
increasing cumulative distribution function F (✓|v) that admits a density function
f (✓|v), v = 0, 1.9 Conditional on V , the signals are identically and independently
distributed. Given that there are two states of the world, the signals satisfy the
monotone likelihood ratio property (MLRP) possibly after a reordering. In other
words, the likelihood ratio l(✓) := f (✓|1) /f (✓|0) , is a nondecreasing function of
✓. Throughout the paper, we further assume that (1) there are no uninforma-
tive signals, that is, F ({✓ : l(✓) = 1}) = 0; and (2) signals contain bounded
information, i.e., there is a constant ⌘ > 0 such that ⌘ < l (✓) <

1
⌘

for all
✓ 2 [0, 1]. The first assumption states that the mass of signals that contain no
information is equal to zero. This is a strengthening of MLRP, but it is weaker
than assuming strict MLRP. The second assumption is a technical condition that
is also maintained by Pesendorfer and Swinkels (1997). These assumptions sig-
nificantly simplify the statements and proofs of our results. However, neither of
these two assumptions is needed to show that information aggregation fails under
the other assumptions outlined in the paper. In fact, in the illustrative example
neither assumption is satisfied but all of our results nevertheless hold.

2.1. Strategies and Equilibrium. We represent bidder behavior by a distri-
butional strategy H, which is a measure over [0, 1]⇥ {s, r, neither}⇥ [0,1). We
focus on the symmetric Nash equilibria of the game � in which all players use the
same distributional strategy H and we refer to a symmetric strategy profile simply
by the strategy H. We ignore, without loss of generality, the option of choosing
“neither” because this option is never chosen by a positive measure of types in any
symmetric equilibrium.10

For a given strategy H, define the measure of types in auction s by
F

H

s
(✓) := H([0, ✓]⇥{s}⇥ [0,1)) and define the selection function a

H : [0, 1] !
[0, 1] as the function such that F

H

s
(✓) =

R
✓

0 a
H(✓)dF (✓). Intuitively, aH(✓) is the

probability that type ✓ bids in auction s. Also, FH

s
(✓|v) :=

R
✓

0 a
H(✓)dF (✓|v) is

8We focus on a uniform prior for expositional simplicity only.
9For any half-open interval (✓0, ✓00], we use F ((✓0, ✓00]|v) := F (✓00|v)� F (✓0|v).

10If a positive mass of types were to choose “neither” in a symmetric equilibrium, then any
bidder who submits a bid equal to zero in auction s would win an object with strictly positive
probability in state V = 1. Thus, all types who choose “neither” and receive a payoff equal to
zero would rather bid zero in the auction and receive a strictly positive expected payoff.
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the measure of types that bid in market s conditional on V = v and F̄
H

s
(✓|v) :=

F
H

s
(1|v) � F

H

s
(✓|v). The kth highest type that bids in auction s is denoted by

Y
n

s
(k), and we set Y

n

s
(k) equal to zero if there are fewer than k bidders in the

auction.
The following lemma, which follows from Pesendorfer and Swinkels (1997, Lem-

mata 3-7), allows us to work exclusively with a pure and nondecreasing bidding
strategy, i.e., a function b : [0, 1] ! [0,1) such that H({✓, s, b(✓)}✓2[0,1]) = F

H

s
(1).

Moreover, if the bidding function is increasing over an interval of types, then any
type ✓ in this interval bids her value conditional on being the pivotal bidder in the
auction.

Lemma 2.1. Any equilibrium H can be represented by a nondecreasing bidding

function b
H
. Moreover, if b

H(✓) is increasing over an interval (✓0, ✓00), then b
H(✓) =

E[V |Y n�1
s

(ks) = ✓, ✓] for almost every ✓ 2 (✓0, ✓00).

Below we define a certain type ✓
H

s
(v) for each state v such that the expected

number of bids above this type’s bid in state v is exactly equal to the number of
goods in market s. We refer to ✓

H

s
(v) as the pivotal type in state v because the

types that determine the auction price are concentrated around ✓
H

s
(v) in a large

market by the law of large numbers (LLN).

Definition 2.1 (Pivotal types). For any strategy H, the pivotal type in state v

is ✓
H

s
(v) := max{✓ : F̄H

s
(✓|v) = s}, and ✓

H

s
(v) := 0 if the set is empty.11

For any sequence of strategies {Hn}, we will denote each ✓
H

n

s
(v) simply by

✓
n

s
(v), and we let ✓s(v) = limn ✓

n

s
(v) and Fs(✓|v) = limF

n

s
(✓|v) whenever such

limits exist.

2.2. Definition of Information Aggregation. We study a sequence of strate-
gies H = {Hn}1

n=1 for a sequence of auctions �n where the n
th auction has n

bidders. We assume that the parameters of the auctions are constant along the
sequence and satisfy all the assumptions that we make.

Suppose that the number of bidders n is large. In this case, the LLN implies
that observing the signals of all n bidders conveys precise information about the
state of the world. A strategy H

n determines an auction price P
n given any

realization of signals. We say that information is aggregated in the auction if this
11The equation F̄H

s
(✓|v) = s can have multiple solutions if FH

s
is flat over a range of ✓.

However, the function F̄H

s
(✓|v) is continuous because it is absolutely continuous with respect

to F̄ (✓|v). Hence, the set
�
✓ : F̄H

s
(✓|v) = s

 
⇢ [0, 1] is compact and has a unique maximal

element if it is nonempty.
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price also conveys precise information about the state of the world. Specifically,
(i) if the likelihood ratio l(P n = p) := Pr(V=1|Pn=p)

Pr(V=0|Pn=p) is close to zero (i.e., if it
is arbitrarily more probable that we observe such a price p when V = 0), then
an outsider who observes price p learns that the state is V = 0. Alternatively,
(ii) if the likelihood ratio l(P n = p) is arbitrarily large, then an outsider who
observes price p learns that the state is V = 1. If the probability that we observe
a price that satisfies either (i) or (ii) is arbitrarily close to one, then we say that the
equilibrium sequence aggregates information. Our formal definition of information
aggregation is given below:

Definition 2.2. (Kremer (2002) and Atakan and Ekmekci (2014)) A sequence
of strategies H aggregates information if the random variables l(P n = p) and
1/l(P n = p) converge in probability to zero in state 0 and state 1, respectively.

We now derive conditions that are necessary and sufficient for information
aggregation. Information aggregation fails if the supports of the limit price dis-
tributions are the same in the two states. The following definition captures such
failures using the mass that separates the pivotal types.

Definition 2.3. The pivotal types are distinct along a sequence H if
limn

p
n|F n

s
(✓n

s
(1)|1) � F

n

s
(✓n

s
(0)|1)| = 1 and the pivotal types are arbitrarily

close along a sequence H if lim infn
p
n|F n

s
(✓n

s
(1)|1)� F

n

s
(✓n

s
(0)|1)| < 1.

Distinct pivotal types is a necessary condition for information aggregation. To
see why, recall that the random variable Y

n

s
(ks + 1) denotes the ks + 1st highest

type that bids in the auction. The auction clears at the bid of this type because
bidding is monotone (Lemma 2.1). For large n, the distribution of Y

n

s
(ks + 1)

in state V = v puts most of the mass within finitely many standard deviations
of the pivotal type in state V = v and the standard deviation is approximated
by
p

s(1� s)/n. If the pivotal types are arbitrarily close, i.e., if the pivotal
types are separated by finitely many standard deviations, then the same set of
types determine the price and the supports of the limit price distributions are the
same in the two states. Therefore, information cannot be aggregated.

Information aggregation also fails if the limit price distribution features an
atom that occurs with positive probability in both states. We term such a failure
pooling by pivotal types and formally define it below.

Definition 2.4. There is pooling by pivotal types along a sequence H if there
is a subsequence of pooling bids {bnk

p
} such that limk Pr(P nk = b

nk
p
|V = v) > 0 for

v = 0, 1. Otherwise, there is no pooling by pivotal types.
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No pooling by pivotal types is also a necessary condition for information ag-
gregation because if it does not hold, then the limit price distribution features
an atom that occurs with positive probability in both states. In the following
lemma, we further show that these two necessary conditions are also sufficient for
information aggregation.

Lemma 2.2. An equilibrium sequence aggregates information if and only if the

pivotal types are distinct and there is no pooling by pivotal types.

A sketch of the argument for sufficiency is as follows: Pick any type ✓ that is
within finitely many standard deviations of the pivotal type in state V = 1 and
note that the auction can clear only at the bids of such types in state V = 1.
Distinctness of the pivotal types implies that type ✓ is infinitely many standard
deviations away from the pivotal type in state V = 0. Therefore, if type ✓ does
not bid in an atom, then an outside observer, who observes a price equal to type
✓’s bid, is arbitrarily certain that the state is V = 1. On the other hand, suppose
that ✓ bids in an atom, i.e., suppose that the price is equal to ✓’s bid with positive
probability in state V = 1. In this case, the probability that the price is equal
to ✓’s bid in state V = 0 is equal to zero because there is no pooling by pivotal
types. Once again, an outside observer, who observes a price equal to ✓’s bid, is
arbitrarily certain that the state is V = 1.

3. Information Aggregation

This section’s main theorem shows that information is not aggregated in market
s along any equilibrium sequence if the object-to-bidder ratio in market s exceeds
a certain cutoff ̄ (described further below). Conversely, if the object-to-bidder
ratio in market s is less than ̄, then information is aggregated in market s along
every equilibrium sequence.

In order to state our main theorem, we first define the cutoff ̄. Let ✓
F

r
(1)

denote the pivotal type in market r in state V = 1 if all types were to bid in auction
r, that is, ✓F

r
(1) is the unique type that satisfies the equality 1�F (✓F

r
(1)|1) = r.

For a given type ✓
0
< 1, let ✓

⇤ (✓0) denote the unique type ✓ < ✓
0 such that

F ([✓, ✓0]|0) = F ([✓, ✓0]|1), and let ✓⇤ (✓0) = ✓
0 if there is no such ✓ < ✓

0.12 For some
intuition, suppose that types ✓ > ✓

0 opt for market r, while types ✓  ✓
0 bid in

auction s. In this case, ✓⇤ (✓0) is defined as the type such that the expected number
of bidders who bid in auction s with signals that exceed ✓

⇤ (✓0) is the same in both
12If l(✓0) > 1, then there is a unique type ✓ < ✓0 such that F ([✓, ✓0]|0) = F ([✓, ✓0]|1). Otherwise,

there is no such type and ✓⇤ (✓0) = ✓0.
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states. The implicit function theorem and MLRP together imply that ✓
⇤ (✓0) is a

decreasing function of ✓0.13

Definition 3.1. Let ✓en := max{✓F
r
(1), inf{✓ : Pr(V = 1|✓) > c}} and ✓en := 1 if

the set over which the infimum is taken is empty. Define ̄ := F ([✓⇤(✓en), ✓en]|0) =
F ([✓⇤(✓en), ✓en]|1).

To better understand the definition of ̄, suppose that all types greater than
✓en select market r while all types smaller than ✓en bid in market s. The cutoff ̄

is defined so that if the object-to-bidder ratio in market s is equal to ̄, then the
pivotal type in market s is equal to ✓

⇤(✓en) in both of the states. Turning next
to the definition of ✓en, further suppose that any type that chooses market r bids
according to an increasing bidding function. Type ✓en is defined as the smallest
type that can make positive profits in an arbitrarily large market r. To see why
the definition captures this property, note that ✓en must be at least as large as
✓
F

r
(1) because only those types greater than ✓

F

r
(1) can actually win an object in

the auction in state V = 1. Furthermore, any type ✓ > ✓
F

r
(1) can make a profit in

market r only if Pr(V = 1|✓) > c because any such type will win an object with
probability one in both states and will pay a price which is at least c. Also, see
Figure 3.1 for a graphical depiction of ̄.

The main implication of Definition 3.1 is as follows: if the object-to-bidder
ratio in market s exceeds ̄, then the pivotal type in state 0 exceeds the pivotal
type in state 1 whenever all types that value market r select market r. Such an
ordering of pivotal types is ruled out by MLRP if all types were to bid in market
s. However, if types that exceed ✓en < 1 choose market r, then the measure of
types that bid in market s is smaller in state 1 than in state 0 as a consequence of
MLRP. This implies that ̄ is less than one. Therefore, there is an open interval
(̄, 1) such that whenever the object-to-bidder ratio is in this interval, the order
of the pivotal types is reversed. The converse is also true, that is, if the object-
to-bidder ratio in auction s is less than ̄, then the pivotal type in state 1 exceeds
the pivotal type in state 0 even if all types that value market r select market r.

Our main theorem is stated below:

Theorem 3.1. If the object-to-bidder ratio in market s exceeds ̄, then there is no

equilibrium sequence that aggregates information in either market. If the object-

13If l(✓0)  1, then ✓⇤ (✓0) = ✓0 and the function is decreasing. Otherwise,
F ([✓⇤(✓0), ✓0]|0) = F ([✓⇤(✓0), ✓0]|1) and the implicit function theorem implies that d✓⇤/d✓0 =
f(✓0|0) (l(✓0)� 1) /f(✓⇤|0) (l(✓⇤)� 1). The fact that F ([✓⇤(✓0), ✓0]|0) = F ([✓⇤(✓0), ✓0]|1) and
MLRP together imply that l (✓0) < 1. Moreover, if ✓⇤(✓0) < ✓0, then MLRP implies that
l(✓⇤) > 1. Therefore, d✓⇤/d✓0 < 0.
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Pr(✓i 2 [✓, ✓en])

✓

F ([✓, ✓en]|1)

F ([✓, ✓en]|0)

̄

✓(̄)

s

✓s(1) ✓en✓s(0)

Figure 3.1: The function F ([✓, ✓en]|v) depicts the fraction of types above ✓ that bid in

auction s in state v given that all types ✓ > ✓en take the outside option. The cutoff

̄ is defined as the value of F ([✓, ✓en]|v) at the point ✓ < ✓en where F ([✓, ✓en]|1) and

F ([✓, ✓en]|0) cross. If s > ̄, then the pivotal type in state 0 exceeds the pivotal type in

state 1.

to-bidder ratio in market s is less than ̄, then information is aggregated in market

s along any equilibrium sequence.

The argument for our main theorem shows that information cannot be aggre-
gated along any equilibrium sequence in market s if the order of the pivotal types
in this market is reversed whenever all the types that value market r select market
r, i.e., if s > ̄. In other words, self-selection is detrimental to information aggre-
gation when scarcity is sufficiently low, or equivalently, when the object-to-bidder
ratio in market s is above the threshold ̄. Conversely, information is aggregated
in market s along any equilibrium sequence if the order of the pivotal types is pre-
served even when all the types that value market r select market r, i.e., if scarcity
is sufficiently high (s < ̄).

Before providing some intuition for Theorem 3.1, we describe an intermediate
result (Lemma A.8 in the Appendix) that we utilize: if information is aggregated
in market s, then the price in market s converges to zero in state V = 0 and one
in state V = 1, i.e., price converges to value. In order to provide an argument for
this intermediate result, we first note that Lemma 2.2 implies that there is a bid
b
⇤
> 0 that separates the support of the limit-price distribution in state 0 from

the support of the limit-price distribution in state 1 if information is aggregated
in market s.

The first step of the argument that establishes the intermediate result stated

11



above shows that the limit-price distribution’s support lies below b
⇤ in state 0

and above b
⇤ in state V = 1: Suppose, on the way to a contradiction, that the

limit-price distribution’s support lies above b⇤ in state V = 0 and below b
⇤ in state

V = 1. Then, any bidder can ensure that she wins an object only in state V = 1

with probability one by submitting a bid equal to b
⇤
. Therefore, any bidder that

submits a bid greater than b
⇤ can improve her payoff by instead submitting a bid

equal to b
⇤. So, the limit-price distribution’s support cannot lie above b

⇤ in state
0. The second step argues that bids less than b

⇤ must all converge to zero, and
therefore the price in state 0 must converge to zero: Any bid less than b

⇤ never
wins in state V = 1 and therefore any such bid, and in particular, the bid of the
pivotal type in state V = 0 must converge to zero. The final step concludes that
the price in state V = 1 must converge to one. If the expected price in state 1

is strictly less than one, then the pivotal type in state 0 could improve her payoff
by bidding one instead of following her equilibrium strategy. If she follows her
equilibrium strategy, she never wins an object in state V = 1 and receives a payoff
equal to zero, while under the deviation she wins an object at a price equal to zero
in state V = 0 and at a price which is strictly less than one in state V = 1 with
positive probability.

Intuition for why information is not aggregated in market s if s > ̄: On
the way to a contradiction, assume that price converges to value in market s and
therefore the payoff of any type that bids in market s is equal to zero. If this is
so, then all types that exceed ✓en would opt for market r. To see this, observe
that if any type ✓ > ✓en did not choose market r, then less optimistic types would
not choose market r either. Moreover, at the limit, types that exceed ✓en face a
choice between market s, where their payoff is equal to zero, and market r, where
their payoff is positive (in fact, their payoff is equal to �c if V = 0 and 1 � c if
V = 1). However, if all types that exceed ✓en opt for market r and if s > ̄, then
we find ✓s(0) > ✓s(1) (see figure 3.1). If information is aggregated in market s,
then limn!1 b

n(✓n
s
(1)) = 1 and limn!1 b

n(✓n
s
(0)) = 0 because price converges to

value. However, this leads to a contradiction that proves the result. The findings
that limn!1 b

n(✓n
s
(1)) = 1, limn!1 b

n(✓n
s
(0)) = 0, and ✓s(0) > ✓s(1) together

contradict that the bidding function is nondecreasing in ✓ for all n. Intuitively,
more pessimistic types opt for market s and there are more of such types in state
V = 0. Therefore, the auction clears at the bid of a more pessimistic type in state
V = 1 than in state V = 0 and this is incompatible with price converging to value.

Intuition for why information is not aggregated in market r: In market r infor-

12



mation aggregation fails for any s in contrast to market s. A similar argument to
the one given for market s implies that the price in market r converges to one in
state V = 1 if information is aggregated. However, if price in market r converges
to one in state V = 1, then the payoff from bidding in market r is negative for
all types and therefore no type would choose this market. But if no type chooses
this market, then the price is equal to c in both states and information is not
aggregated in market r.

Recall that information is aggregated in an auction if and only if the pivotal
types are distinct and they submit distinct bids (no pooling by pivotal types) by
Lemma 2.2. Therefore, if s > ̄, then information aggregation must fail in market
s either because the pivotal types are arbitrarily close or because the pivotal types
bid in an atom. We construct examples of equilibria where the pivotal types are
arbitrarily close and where the pivotal types bid in an atom in section 4 and the
appendix, respectively.

Intuition for why information is aggregated in market s if s < ̄: The def-
inition of ̄ implies that ✓s(1) > ✓s(0) whenever s < ̄, i.e., the pivotal types
are distinct. Below, we argue that there can be no pooling by pivotal types ei-
ther whenever ✓s(1) > ✓s(0). But then Lemma 2.2 implies that information is
aggregated.

To sustain a pool, the highest type that submits the pooling bid (denoted by
✓p) must prefer the pooling bid to a slightly higher bid that wins an object with
probability one whenever the price is equal to the pooling bid. Also, the lowest
type that submits the pooling bid (denoted by ✓

p
) must prefer the pooling bid

to a slightly lower bid that avoids winning an object whenever the price is equal
to the pooling bid. In other words, pooling must be incentive compatible for
type ✓p and individually rational for type ✓

p
. In the terminology of Lauermann

and Wolinsky (2017) (or Pesendorfer and Swinkels (1997)), we say that there is
winner’s blessing at pooling if the probability of winning at the pooling bid
is higher when V = 1 than when V = 0, in other words, if a bidder wins more
frequently at pooling when the object’s value is high. Similarly, there is loser’s
blessing at pooling if a bidder loses more frequently at pooling when the object’s
value is low. Put another way, if there is loser’s and winner’s blessing at pooling,
then losing is a signal in favor of V = 0 and winning a signal in favor of V = 1.
The strengths of these two signals determine whether a pooling bid is incentive
compatible and individually rational. In particular, the loser’s blessing’s strength
determines the lowest pooling bid that is incentive compatible for type ✓p while the
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winner’s blessing’s strength determines the highest pooling bid that is individually
rational for type ✓

p
. Our key result that establishes that pooling by pivotal types

is not possible shows that if ✓s(1) > ✓s(0), then there are bounds on the strength
of the loser’s and winner’s blessing at the pooling bid. These bounds preclude a
pooling bid that is both individually rational for type ✓

p
and incentive compatible

for type ✓p thus establishing that pooling by pivotal types is incompatible with
equilibrium.

Theorem 3.1 showed that the level of scarcity in the frictionless market (s),
together with the cutoff object-to-bidder ratio ̄, determines whether information
is aggregated. The following remark, which presents comparative statics for ̄,
further suggests that a frictional market r with little scarcity (i.e., a large object-to-
bidder ratio r) is more likely to disrupt information aggregation. Taken together,
our analysis identifies the scarcity parameters s and r as key determinants of
information aggregation.

Remark 3.1. The ratio ̄ is non-increasing in the object-to-bidder ratio in the
market r and non-decreasing in the level of frictions c. This is because the type
✓en is non-decreasing in c and non-increasing in r. Consequently, ✓⇤(✓en) is non-
increasing in c and non-decreasing in r. If no type finds it profitable to purchase
an object at a price equal to c, i.e., if c > Pr(V = 1|✓) for all ✓, then ✓

⇤(✓en) = 1 and
̄ = 1. If all types are perfectly informed or if c = 0, then information is aggregated
in both markets whenever s +r < 1 and information is not aggregated in either
market if s + r > 1 in both of these cases.14

4. Equilibria in the Illustrative Example

In this section, we use the example discussed in the introduction to illustrate
how type dependent market selection leads to non-revealing prices in equilibrium.
We assume that s + r < 1 and that signals are drawn according to the density
function

f(✓|V ) =

8
>>><

>>>:

3 (1� g) (1� V ) for ✓ 2 E (0) := [0, 1/3)

3g for ✓ 2 E (1/2) := [1/3, 2/3]

3 (1� g)V for ✓ 2 E (1) := (2/3, 1]

where g 2 [0, 1] is the fraction of uninformed types ✓ 2 E (1/2). Note that all
types, other than those in E (1/2), are perfectly informed. Under these assump-
tions, information aggregation fails in both markets if the object-to-bidder ratio
in the frictional market exceeds the fraction of informed bidders (i.e., r > 1� g)
and information is aggregated in both markets if r < 1 � g. We will describe

14If all types are perfectly informed, then a straightforward computation yields ̄ = 1� r.
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equilibrium sequences for each of these two cases here. Proposition A.1, in the
appendix, constructs these sequences and shows that the properties highlighted
here hold across all equilibrium sequences.

This example focuses attention on market selection since bidding is relatively
simple: Each ✓ 2 E(0) bids zero, each ✓ 2 E(1) bids one, and each ✓ 2 E(1/2)
bids E[V |Y n�1

m
(km) = ✓], in the market of their choice. Moreover, types in E(0)

never bid in market r because c > 0. Therefore, pinning down market selection
strategies for the uninformed types and those in E(1) is sufficient to construct an
equilibrium. In the equilibrium sequences that we describe, the mass of types that
select market s exceeds s in both states and the mass that separates the two
pivotal types (i.e., ✓n

s
(1) and ✓

n

s
(0)) is equal to the mass of types in E(1) that bid

in market s, i.e., F n

s
(E(1)|1).

This example’s structure also allows us to compute the limit price distribution
in market s in closed form using the central limit theorem: the bid of a type,
which is z standard deviations from the pivotal type in state V = 1, converges
to bs(z) = �(z)

�(z+x)/

⇣
1 + �(z)

�(z+x)

⌘
, where � is the standard normal density, x :=

limF
n

s
(E(1)|1)/�n is the mass that separates the two pivotal types expressed in

standard deviations, and �
n ⇡

p
(1� s)s/n is the standard deviation. The

limit price is less than or equal to bs(z) with probability �(z) and �(z + x) in
states V = 1 and V = 0, respectively. As x approaches infinity, the prices in state
V = 1 and V = 0 converge to point masses at p = 1 and p = 0, respectively. As
x approaches zero, the price converges to a point mass at 1/2 in both states.

We now assume 1 � g < r and describe equilibrium sequences along which
information aggregation fails by considering two separate cases: c > 1/2 and
c < 1/2. In both of these cases, the mass of types in E(1) that chooses market
s is positive for each n but converges to zero at the order of 1/

p
n. Information

aggregation fails in market r due to insufficient competition: at the limit the
number of bidders in this market is less than the number of objects and the price
is equal to the reserve price c in both states with positive probability. Information
aggregation fails in market s due to pivotal types that are arbitrarily close even
though there is sufficient competition. This is because the mass that separates
the two pivotal types is chosen at the order of 1/

p
n by construction. The limit

price distribution in market s is atomless and strictly increasing over [0, 1] in both
states. See figure 4.1 for a depiction of the limit price distributions as a function
of x.

Suppose that c > 1/2. Under this assumption, no uninformed type chooses
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Pr[P  b(z)|V ]

p = 0
b(z)

V = 0
V = 1

p = 1

1

Figure 4.1: Limit cumulative price distributions in market s in states V = 0
and V = 1. The price distributions’ properties imply that limE[P n

s
|V = 1] =

1 � limE[P n

s
|V = 0]. If c > 1/2, then x is such that limE[P n

s
|V = 1] = c.

Similarly, if c < 1/2, then x is such that limE[P n

s
|V = 0] = c. The solid curves

depict the cumulative price distributions for c = 0.6 or c = 0.4, in which case x is
approximately equal to one. The dotted curves depict the price distributions as c
ranges from 0.6 to 0.8.

market r. Since only types in E(1) bid in market r, the mass of types that bid in
market r is less than r and the price in market r converges to the reserve price c

in both states, i.e., the price is uninformative. The construction’s main step picks
the sequence {F n

s
(E(1)|1)} to ensure that types in E(1) are indifferent between

the two markets for each n. This choice implies that the expect price in market
s is also equal to c in state V = 1 at the limit, i.e., expected prices are equalized
across markets in state V = 1.

If c < 1/2, then in contrast to the previous case, uninformed types also bid
in both markets. The mass of uninformed types that select market r is chosen to
ensure that the mass of types in market r converges to r and to a value strictly
less than r in states V = 1 and V = 0, respectively. The price converges to c in
state V = 0 and converges to a binary random variable that is equal to one and
c with probabilities (1 � 2c)/(1 � c) and c/(1 � c), respectively, in state V = 1.
Hence, the expected price in state V = 1 converges to 1 � c. The construction’s
main step again chooses the sequence {F n

s
(E(1/2)|1), F n

s
(E(1)|1)} to ensure that

types in E(1/2) and E(1) are indifferent between the two markets. These choices
imply that the expected limit price in both markets is equal to c and 1�c in states
V = 0 and V = 1, respectively, i.e., expected prices in both states are equalized
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across markets.

Remark 4.1. In this example, information aggregation fails either due to insuffi-
cient competition (market r) or because the same set of types determine the price
at the limit (market s). More generally, information aggregation in market s can
also fail due to pooling by pivotal types and we present an example in the online
appendix.

We end this section by assuming 1 � g > r and describing an equilibrium
sequence along which information is aggregated. Along the equilibrium sequence,
only types in E(1) bid in market r and the mass of such types that bid in market
r exceeds r in state V = 1. Therefore, the price in market r converges to c and
1 in states V = 0 and V = 1, respectively. A positive mass of types in E(1) also
bid in market s and x = limF

n

s
(E(1)|1)/�n ! 1 along the subsequence that we

construct. Therefore, the price in market s converges to 0 and 1 in states V = 0

and V = 1, respectively.
5. Discussion and Conclusion

The results that we presented in the paper argued that the price in a large,
uniform-price, common-value auction may not aggregate all available informa-
tion if bidders have access to an alternative market that delivers state dependent
payoffs. However, we studied only one such instance. There are many other insti-
tutional configurations that could result in similar outcomes. For example, market
r could instead be (1) A pay-as-you-bid (discriminatory price) auction as in Jack-
son and Kremer (2007), where all bidders that win an object from the auction pay
their own bid, (2) An all-pay-auction as in Chi et al. (2019), or (3) A uniform-price
auction where each bidder must pay a positive cost in order to submit a bid as in
Murto and Valimaki (2014). The payoff distributions in these alternative specifi-
cations have similar properties to the payoff distribution in market r as described
by Theorem 3.1: payoffs are negative in state V = 0 and positive in state V = 1.
Our analysis suggests that information aggregation could be hindered also by such
market mechanisms.

A. Appendix

Throughout the Appendix, given a sequence of strategies H = {Hn}1
n=1 for

a sequence of auctions {�n}1
n=1, the notation Prn represents the joint probability

distribution over states of the world, signal and bid distributions, allocations,
market choices, and prices, where this distribution is induced by the strategy H

n.
Given a strategy H

n, we denote the payoff to type ✓ from bidding b in auction s

by u
n(s, b|✓) and this type’s payoff by u

n(✓).
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A.1. Bidding Equilibria Suppose participation in market s is exogenously
determined by a function Fs(·) that is absolutely continuous with respect to F (·)
and �̂(Fs) is the auction where each type ✓ is allowed to bid in the auction with
probability a(✓) and is assigned a payoff equal to zero with probability 1 � a(✓).
A strategy H is a bidding equilibrium if it is a symmetric Nash equilibrium of the
auction �̂(Fs).

Denote by E(✓0) = {✓ : l(✓i = ✓) = l(✓i = ✓
0)} an equivalence class of types

that receive signals that generate the same posterior. If E(✓0) is not a singleton,
then H may involve a range of bids given a signal in E(✓0). However, for any such
H there is another strategy, which is pure and increasing on each E(✓0), such that
this strategy yields the same payoff to the player, and is indistinguishable to any
other player. Strategies which differ only in their representation over sets E(✓0)
generate the same joint distribution over values, bids, and equilibrium prices. We
choose a representation of H which is pure and nondecreasing over equivalence
classes E(✓0).

The following lemma shows that the bids of the pivotal types determine the
auction-clearing price of a sufficiently large auction.

Lemma A.1. Suppose lim F̄
n

s
(0|v) > s and let ✓

n
denote the type such that

F
n

s
([✓n, ✓n

s
(v)]|v) = ✏ and ✓

n = 0 if no such type exist. Similarly, let ✓̄
n

denote

the type such that F
n

s
([✓n

s
(v), ✓̄n]|v) = ✏ whenever such a type exists. For every

✏ > 0, limPr(P n 2 [bn(✓n), bn(✓̄n)]|V = v) = 1 where b
n (0) = 0. Conversely, if

lim F̄
n

s
(0|v) < s, then limPr(P n = 0|V = v) = 1.

Proof. The LLN implies that limPr(Y n

s
(ks + 1) � ✓

n|V = v) = 1 for every ✏ > 0.
However, if Y n

s
(ks + 1) � ✓

n, then P
n = b

n(Y n

s
(ks + 1)) � b

n(✓n) because b
n is

nondecreasing by Lemma 2.1. Therefore, Pr(P n � b
n(✓n)|V = v) � Pr(Y n

s
(ks +

1) � ✓
n|V = v), and taking limits proves the first part of the claim. We establish

limPr(Y n

s
(ks +1)  ✓̄

n|V = v) = 1 using the same idea. If lim F̄
n

s
(0|v) < s, then

limPr (P n = 0|V = v) = 1 also follows directly from the LLN.

A.1.1. Pooling Calculations. In this subsection we determine when pooling by
pivotal types is incompatible with equilibrium. Given a strategy H, denote by
Pr(b win|P n = b, V = v, ✓) the conditional probability that bidder i wins an
object with a bid equal to b given that the auction price is equal to b, the state
is equal to v, and bidder i receives a signal equal to ✓. Our assumptions that the
signals are conditionally independent given V and that H is symmetric together
imply that Pr(b win|P n = b, V = v, ✓) = Pr(b win|P n = b, V = v). This is
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because once one conditions on the state, the individual signal of bidder i does
not provide any additional information (conditional independence). Moreover, this
probability is independent of the identity of the bidder that we consider because
we focus on symmetric strategies.

Given a pooling bid b
n

p
, let ✓

n

p
= sup{✓ : bn(✓) = b

n

p
}, ✓n

p
= inf{✓ : bn(✓) = b

n

p
},

and let lim ✓
n

p
= ✓p and lim ✓

n

p
= ✓

p
whenever these limits exist. The following

lemma calculates Pr(bn
p
wins|P n = b

n

p
, V = v) for various cases, and the proof,

which involves lengthy computations, is in the online appendix.

Lemma A.2. If limPr(P n = b
n

p
|v) > 0, then there is a constant C > 0 such that

Pr(bn
p
(✓n) lose|P n = b

n

p
, V = v) � C

max{s � F
n

s
(✓n

p
|1), 1/

p
n}

F n
s
([✓n

p
, ✓n

p
]|1)

for all sufficiently large n. If limF
n

s
([✓n

p
, ✓

n

p
]|v) > 0, then

limPr(bn
p
win|P n = b

n

p
, V = v) = lim

s � F̄
n

s
(✓n

p
|v)

F n
s
([✓n

p
, ✓n

p
]|v) .

If limPr(P n � b
n

p
|v = 0), then

limPr(bn
p
lose|P n = b

n

p
, V = v)/

F
n

s
(✓n

p
|v)(1� F̄s(✓

n

p
|v))

nF n
s
([✓n

p
, ✓n

p
]|v)(s � F̄ n

s
(✓n

p
|v))

= 1.

Lemma A.3. Fix a sequence of bidding equilibria H. If Fs(✓s(1)|1) > Fs(✓s(0)|1)
or if Fs(1|1) � Fs(1|0) and Fs (1|1) > s, then there is no pooling by pivotal types.

Proof. We will argue that if Fs(✓s(1)|1) > Fs(✓s(0)|1), then pooling by pivotal
types is incompatible with equilibrium. At the end of the proof we show that
Fs(1|1) � Fs(1|0) and Fs(1|1) > s imply Fs(✓s(1)|1) > Fs(✓s(0)|1).

The fact that Fs(✓s(1)|1) > Fs(✓s(0)|1) implies ✓s(1) > ✓s(0) and Fs(✓s(1)|0) >
Fs(✓s(0)|0). Pooling by pivotal types implies that Fs(✓p|v)  Fs(✓s(0)|v) <

Fs(✓s(1)|v)  Fs(✓p|v). We will show that pooling by pivotal types is incompatible
with equilibrium behavior in the following three cases: (1) Fs(✓p|v) < Fs(✓s(0)|v)
and Fs(✓p|v) > Fs(✓s(1)|v); (2) Fs(✓p|v) = Fs(✓s(1)|v) and Fs(✓p|v) < Fs(✓s(0)|v);
and (3) Fs(✓p|v) = Fs(✓s(0)|v).

Case 1: Fs(✓p|v) < Fs(✓s(0)|v) and Fs(✓p|v) > Fs(✓s(1)|v). For type ✓p bidding
bp instead of bidding slightly above the pooling bid is incentive-compatibility:
(1 � bp)l(✓p) limPr(P n = b

n

p
, b

n

p
win|V = 1) � bp limPr(P n = b

n

p
, b

n

p
win|V =
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0) � (1� bp)l(✓p)� bp.Therefore,

bp

1� bp
� l(✓p)

limPr(P n = b
n

p
, b

n

p
loses|V = 1)

limPr(P n = bn
p
, bn

p
loses|V = 0)

.

Pooling is individually rational for type ✓
p
: (1�bp)l(✓p) limPr(P n = b

n

p
, b

n

p
win|V =

1)� bp limPr(P n = b
n

p
, b

n

p
win|V = 0) � 0. Therefore,

bp

1� bp
 l(✓

p
)
limPr(P n = b

n

p
, b

n

p
wins|V = 1)

limPr(P n = bn
p
, bn

p
wins|V = 0)

.

Combining the incentive compatibility and individual rationality constraints and
substituting in using by Lemma A.2, we obtain

l(✓
p
)
Fs(✓p|1)� Fs(✓s(1)|1)
Fs(✓p|0)� Fs(✓s(0)|0)

� l(✓p)
Fs(✓s(1)|1)� Fs(✓p|1)
Fs (✓s(0)|0)� Fs

�
✓
p
|0
� ,

which is not possible because l(✓
p
)  Fs(✓s(0)|1)�Fs(✓p|1)

Fs(✓s(0)|0)�Fs(✓p|0)
<

Fs(✓s(1)|1)�Fs(✓p|1)
Fs(✓s(0)|0)�Fs(✓p|0)

and

because Fs(✓p|1)�Fs(✓s(1)|1)
Fs(✓p|0)�Fs(✓s(0)|0) <

Fs(✓p|1)�Fs(✓s(1)|1)
Fs(✓p|0)�Fs(✓s(1)|0)  l(✓p) by MLRP.

Case 2: If Fs(✓p|v) = Fs(✓s(1)|v) and Fs(✓p|v) < Fs(✓s(0)|v), then Lemma A.2
implies that limPr(P n = b

n

p
, b

n

p
wins|V = 1) = 0 and limPr(P n = b

n

p
, b

n

p
wins|V =

0) > 0. However, then pooling cannot be sustained by Lemma 7 and Corollary 3
in Pesendorfer and Swinkels (1997).

Case 3: If Fs(✓p|v) = Fs(✓s(0)|v), then Lemma A.2 implies that limPr(P n =

b
n

p
, b

n

p
wins|V = 0) = 1 and limPr(P n = b

n

p
, b

n

p
wins|V = 1) < 1 again showing

that pooling cannot be sustained by Lemma 7 and Corollary 3 in Pesendorfer and
Swinkels (1997).

We conclude the proof by arguing that Fs(1|1) � Fs(1|0) and Fs(1|1) > s

together imply that Fs(✓s(1)|1) > Fs(✓s(0)|1). On the way to a contradiction
assume Fs(✓s(1)|1)  Fs(✓s(0)|1). Note Fs(1|1) > s implies 0 < Fs(✓s(1)|1) 
Fs(✓s(0)|1). Our assumption Fs(✓s(1)|1)  Fs(✓s(0)|1) and MLRP together imply
that 1 � F̄s(✓s(1)|1)/F̄s(✓s(1)|0) > Fs(✓s(1)|1)/Fs(✓s(1)|0). However, Fs(1|v) =

F̄s(✓s(1)|v) + Fs(✓s(1)|v), F̄s(✓s(1)|1)  F̄s(✓s(1)|0), and Fs(✓s(1)|1) < Fs(✓s(1)|0)
together imply that Fs(1|1) < Fs(1|0) leading to a contradiction.

The following lemma shows that there cannot be a pooling bid that occurs
with positive probability in state V = 1 and probability zero in state V = 0 if the
pivotal types are distinct.
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Lemma A.4. Fix a sequence of bidding equilibria H and assume
p
n(F n

s
(✓n

s
(1)|1)�

F
n

s
(✓n

s
(0)|1)) ! 1. There is no sequence of pooling bids b

n

p
such that limPr(P n =

b
n

p
|V = 1) > 0 and limPr(P n � b

n

p
|V = 0) = 0.

Proof. We will show that lim
Pr(bn lose|Pn=b

n
p ,V=0)

Pr(bn lose|Pn=bnp ,V=1) = 0 which implies that pooling
cannot be sustained for sufficiently large n by Lemma 7 and Corollary 3 in Pe-
sendorfer and Swinkels (1997). Lemma A.2 gives that

lim
Pr(bn lose|P n = b

n

p
, 0)

Pr(bn lose|P n = bn
p
, 1)



lim
F

n

s
([✓n

p
, ✓

n

p
]|1)

F n
s
([✓n

p
, ✓n

p
]|0)

CF
n

s
(✓n

p
|0)(1� F̄s(✓

n

p
|0))

n(s � F̄ n
s
(✓n

p
|0))max{s � F n

s
(✓n

p
|1), 1/

p
n}

where C 2 (0,1) . However, F n

s
([✓n

p
, ✓

n

p
]|1)/F n

s
([✓n

p
, ✓

n

p
]|0)  1/⌘ by Lemma A.5,

nmax{s � F
n

s
(✓n

p
|1), 1/

p
n} �

p
n, F n

s
(✓n

p
|0)(1� F̄s(✓

n

p
|0))  1, and lim

p
n(s �

F̄
n

s
(✓n

p
|0)) = 1 (because limPr(P n � b

n

p
|V = 0) = 0). Therefore,

limPr(bn lose|P n = b
n

p
, 0)/Pr(bn lose|P n = b

n

p
, 1) 

lim 1/(C⌘
p
n(s � F̄

n

s
(✓n

p
|0))) = 0.

A.1.2. Information content of being pivotal. In this subsection, we provide bounds
for the ratio l(Y n(ks + 1) = ✓

n) = Pr(Y n(ks + 1) = ✓
n|V = 1)/Pr(Y n(ks + 1) =

✓
n|V = 0), i.e., the information content of the event of being pivotal. The re-

sults we present below show that the event of being pivotal provides only bounded
amounts of information for the types that set the price if the pivotal types are
arbitrarily close.

We begin with the following lemma that outlines the implication of our as-
sumption that there are no arbitrarily informative signals.

Lemma A.5. For any interval I ⇢ [0, 1],

F
n

s
(I|V = 1) 2 [⌘F n

s
(I|V = 0) ,

F
n

s
(I|V = 0)

⌘
].

Thus,
p
n(F n

s
(✓n

s
(1)|0)�F

n

s
(✓n

s
(0)|0)) < 1 iff

p
n|F n

s
(✓n

s
(1)|1)�F

n

s
(✓n

s
(0)|1) | <

1.

Proof. To see this, note F
n

s
(I|1) =

R
I
a(✓)f(✓|1)d✓ =

R
I
a(✓)f(✓|0)l(✓)d✓ and
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⌘F
n

s
(I|0) = ⌘

R
I
a(✓)f(✓|0)d✓ 

R
I
a(✓)f(✓|0)l(✓)d✓  1

⌘

R
I
a(✓)f(✓|0)d✓ = 1

⌘
F

n

s
(I|0)

because l(✓) 2 (⌘, 1/⌘) for ✓ 2 [0, 1].

The probability that a particular type ✓ is pivotal (i.e., Y n

s
(ks + 1) = ✓) can

be approximated using the central limit theorem. If lim ns�nF̄
n
s (✓|v)p

ns(1�s)
= a, then

Bi(ks;n, F̄ n

s
(✓|v)) ! � (a) where Bi and � denote the binomial and standard

normal cumulative distributions, respectively. Moreover, if we let p = F̄
n

s
(✓|v),

then

bi(ks;n, p) =

✓
n

ks

◆
p
ks(1� p)n�ks =

1 + �n(p)p
2⇡ns(1� s)

�

 
ks � npp
s(1� s)n

!
(A.1)

where bi and � denote the binomial and standard normal densities, respectively;
and limn!1 sup

p:|np�ks|<nt �n(p) = 0 for t < 2/3 (see Lesigne (2005, Proposition
8.2)). In the following two lemmata, we use these convergence results and show
that if the price is set by a type ✓ that is within finitely many standard deviations
of both pivotal types, then the information that this type gets from being pivotal
is bounded.

For any ✓ 2 [0, 1] and v = 0, 1 define

z
n

v
(✓) :=

ks � (n� 1) F̄ n

s
(✓|v)p

(n� 1)s(1� s)
.

Lemma A.6. Pick a sequence of types {✓n} that bid in market s. Assume that

lim z
n

v
(✓n) = zv for v = 0, 1 and lim l(✓n) = ⇢. For any � > 0, there exists an

N such that for all n > N we have ⇢ (1� �)�(z1)/�(z0)  l(Y n(ks + 1) = ✓
n) 

⇢ (1 + �)�(z1)/�(z0). Therefore, l(Y n(ks + 1) = ✓
n) ! �(z1)/�(z0)⇢.

Proof. A direct computation shows that l(Y n(ks+1) = ✓
n) = l(✓n) bi(ks;n�1,F̄n

s (✓n|1))
bi(ks;n�1,F̄n

s (✓n|0)) .
Eq. (A.1) implies that for any � > 0, there exists an N such that

(1� �)�(zn1 (✓
n))/�(zn0 (✓

n))  bi(ks;n� 1, F̄ n

s
(✓n|1))/bi

�
ks;n� 1, F̄ n

s
(✓n|0)

�


(1 + �)�(zn1 (✓
n))/�(zn0 (✓

n))

for all n > N . Our assumption that lim z
n

v
(✓n) = zv and ks/(n� 1) ! s together

establish that lim
p
n|F̄ n

s
(✓n|v) � s| < 1 for v = 0, 1. The fact that �(zn

v
(✓))

is a continuous functions of ✓ implies that for any � > 0, there exists an N

such that for all n > N we have ⇢ (1� �)�(z1)/�(z0)  l(Y n(ks + 1) = ✓
n) 

⇢ (1 + �)�(z1)/�(z0).
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Lemma A.7. Assume lim
p
n|F n

s
(✓n

s
(1)|1)� F

n

s
(✓n

s
(0)|1) | = x < 1 and

lim
p
n(s � F̄

n

s
(0|0)) = �1. Suppose ✓

n

y
is a the type such that

F
n

s
([✓n

y
, ✓

n

s
(0)]|0) =

p
s(1� s)/n. For any � > 0, there exists an N such that for

all n > N and for any interval [a, b] ⇢ [✓n
y
, ✓

n

s
(0)] such that F

n

s
([a, b] |0) > 0 we

have ⌘ (1� �)�(x+ y/⌘)/� (0)  l(Y n(ks + 1) 2 [a, b])  (1 + �)� (0) /⌘� (y)

Proof. Suppose, without loss of generality, that lim
p
n(Fn

s (✓ns (1)|1)�F
n
s (✓ns (0)|1))p

s(1�s)
� 0.

Note that if lim
p
n(s � F̄

n

s
(0|0)) = �1, then lim

p
nFs(✓ns (0)|0) = 1 and the

interval
⇥
✓
n

y
, ✓

n

s
(0)
⇤

is well defined for all sufficiently large n. For any sequence
{✓n} such that ✓

n 2 [✓n
y
, ✓

n

s
(0)] for every n, we have lim z

n

v
(✓n) = lim

p
n(s �

F̄
n

s
(✓n|v))/

p
s(1� s). Also, l(✓) 2 [⌘, 1/⌘] (no arbitrarily informative signals),

lim z
n

1 (✓
n) 2 [�x�y/⌘, 0], and lim z

n

0 (✓
n) 2 [�y, 0]. Therefore, Lemma A.6 implies

that for any � > 0, there exists an N such that for all n > N and any ✓ 2 [✓n
y
, ✓

n

s
(0)]

(1� �)
� (x+ y/⌘)

� (0)


bi
�
ks;n� 1, F̄ n

s
(✓|1)

�

bi
�
ks;n� 1, F̄ n

s
(✓|0)

�  (1 + �)
� (0)

� (y)
.

Thus using the fact that l(✓) 2 [⌘, 1/⌘], we conclude that

⌘ (1� �)�(x+ y/⌘)/� (0)  l(Y n(ks + 1) 2 [a, b])  (1 + �)� (0) /⌘� (y)

for any interval [a, b] ⇢ [✓n
y
, ✓

n(0)].

A.1.3. Proof of Information Aggregation Lemma 2.2.

Proof of Lemma 2.2. First we argue that if H aggregates information, then there
is no pooling by pivotal types and the pivotal types are distinct. Note that if there
is pooling by pivotal types, then H does not aggregate information by definition.15

We will argue that if H aggregates information, then the pivotal types are
distinct (lim

p
n|F n

s
(✓n

s
(1)|1)� F

n

s
(✓n

s
(0)|1)| = 1). Suppose the pivotal types are

arbitrarily close, i.e., lim infn
p
n|F n

s
(✓n

s
(1)|1) � F

n

s
(✓n

s
(0)|1)| < 1. Then there

exists a subsequence {nk} such that limnk

p
n|F n

k

s
(✓n

k

s
(1)|1) � F

n
k

s
(✓n

k

s
(0)|1)| =

x < 1. We will show that information is not aggregated along this subsequence,
which, with a slight abuse of notation, we index by n . Recall that F̄ n

s
(0|0) is the

fraction of types who bid in market s in state 0. In the next two claims, we will
show 1) If lim

p
n(s � F̄

n

s
(0|0)) > �1, then H does not aggregate information;

and 2) If lim
p
n(s � F̄

n

s
(0|0)) = �1, then H does not aggregate information.

15This is because limPr
�
Pn = bn

p
|V = v

�
> 0 for v = 0, 1, i.e., the auction price is equal to

the pooling bid with strictly positive probability in both states.
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Therefore, we will conclude that if the pivotal types are arbitrarily close, then H

does not aggregate information establishing our claim.

Claim A.1. If lim
p
n|F n

s
(✓n

s
(1)|1)�F

n

s
(✓n

s
(0)|1)| < 1 and lim

p
n(s�F̄

n

s
(0|0)) >

�1, then H does not aggregate information.

Proof. Suppose lim
p
n |F n

s
(✓n

s
(1)|1)� F

n

s
(✓n

s
(0)|1)| < 1. We will show that the

price is equal to zero with strictly positive probability in both states and therefore
H does not aggregate information. Suppose that

p
n(s� F̄

n

s
(0|0))/� ! x > �1

where x is possibly equal to +1 and where � :=
p

s(1� s). The central limit
theorem implies that the number of goods in the auction exceeds the number of
bidders with positive probability if V = 0, and limn Pr (Y n

s
(ks + 1) = 0|V = 0) =

� (x) > 0.

Below we argue that lim
p
n |F n

s
(✓n

s
(1)|1)� F

n

s
(✓n

s
(0)|1)| < 1 and

p
n(s �

F̄
n

s
(0|0))/� ! x > �1 together imply that

p
n(s � F̄

n

s
(0|1))/� ! x

0
> �1.

But if
p
n(s � F̄

n

s
(0|1))� ! x

0
> �1, then applying the central limit theorem

once again we find limn Pr(Y n

s
(ks + 1) = 0|V = 1) = � (x0) > 0 and therefore

limn Pr (P n = 0|V = 1) � � (x0) > 0. However, limn Pr (P n = 0|V = v) > 0 for
v = 0, 1 and limn l(P n = 0) = � (x0) /� (x) 2 (0,1) contradicts that H aggregates
information.

We argue that

p
n(s � F̄

n

s
(0|0))/� =

p
n
�
s �

�
F

n

s
(✓n

s
(0)|0) + F̄

n

s
(✓n

s
(0)|0)

��
/� ! x > �1

implies lim
p
nFs(✓ns (0)|0) < 1 and therefore lim

p
nFs(✓ns (0)|1) < 1. By def-

inition we have F̄
n

s
(✓n

s
(0)|0) = s if s  F̄

n

s
(0|0) and ✓

n

s
(0) = 0 otherwise.

Therefore, lim
p
n(s � F̄

n

s
(0|0)) = �1 if and only if lim

p
nFs(✓ns (0)|0) = 1.

Hence,
p
n(s � F̄

n

s
(0|0))/� ! x > �1 implies that lim

p
nFs(✓ns (0)|0) < 1 and

hence lim
p
nFs(✓ns (0)|1) < 1 by Lemma A.5.

We now show that lim
p
n(s � F̄

n

s
(0|0)) = x > �1 implies lim

p
n(s �

F̄
n

s
(0|1)) > �1. We argued in the previous paragraph that

p
n(s�F̄

n

s
(0|1))/� !

�1 if and only if lim
p
nFs(✓ns (1)|1) = 1. However, if lim

p
nFs(✓ns (1)|1) = 1,

then lim
p
nF

n

s
([✓n

s
(0), ✓n

s
(1)]|1) = 1 because lim

p
nFs(✓ns (0)|0) < 1 and because

lim
p
nFs(✓ns (0)|1) < 1. But this contradicts lim

p
n|F n

s
(✓n

s
(1)|1)�F

n

s
(✓n

s
(0)|1)| <

1. Hence,
p
n(s � F̄

n

s
(0|1))/� ! x

0 for some x
0
> �1 which is possibly equal

to +1.

We now turn to the case where lim
p
n(s � F̄

n

s
(0|0)) = �1. Pick any y > 0
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and let ✓
n

y
denote the type such that

F
n

s
([✓n

y
, ✓

n

s
(0)]|0) = �y/

p
n (A.2)

when such a type exists. Observe that ✓
n

y
< ✓

n

2y/3 < ✓
n

y/3 < ✓
n(0) and

F
n

s
([✓n2y/3, ✓

n

y/3]|0) = �y/3/
p
n by the definition of these types given in Eq. (A.2).

Let A
n := {p : p = b

n(✓), ✓ 2 [✓n2y/3, ✓
n

y/3]}. The central limit theorem implies that
limPr(Y n(k + 1) 2 [✓n2y/3, ✓

n

y/3]|V ) = 0 = �(2y/3) � �(y/3) > 0. Also, Pr(P n 2
A

n|V = 0) � Pr(Y n(k + 1) 2 [✓n2y/3, ✓
n

y/3]|V ) = 0 because P
n = b

n(Y n(k + 1)).
The inequality above does not necessarily hold as an equality because types other
than those [✓n2y/3, ✓

n

y/3] may also choose a bid in A
n. Lemma A.7 implies that

limPr(Y n(k + 1) 2 [✓n2y/3, ✓
n

y/3]|V = 1) � �(x+y/⌘)
�(0) ⌘(� (2y/3) � � (y/3)) > 0.

Therefore limPr(P n 2 A
n|V = 1) � �(x+y/⌘)

�(0) ⌘(� (2y/3)� � (y/3)) > 0.

Claim A.2. If lim
p
n|F n

s
(✓n

s
(1)|1) � F

n

s
(✓n

s
(0)|1)| = x < 1 and lim

p
n(s �

F̄
n

s
(0|0)) = �1, then H does not aggregate information.

Proof. We will argue that there exists an ✏ > 0 such that l(P n = p) 2 (✏, 1/✏) for
any p 2 A

n and any n sufficiently large. However, this together with the facts
that Pr(P n 2 A

n|V = 1) > 0 and Pr(P n 2 A
n|V = 0) > 0 imply that H does not

aggregate information.
Pick any � > 0. For any ✓

⇤ 2 [✓n2y/3, ✓
n

y/3] that bids in market s with pos-
itive probability, we have either 1) {✓ : b

n(✓) = b
n(✓⇤)} ⇢ [✓n

y
, ✓

n(0)] or 2)
{✓ : bn(✓) = b

n(✓⇤)} * [✓n
y
, ✓

n(0)]. Moreover, the fact that the bidding function
is monotone implies that the set {✓ : bn(✓) = b

n(✓⇤)} is either a singleton or an
interval.

If {✓ : bn(✓) = b
n(✓⇤)} ⇢ [✓n

y
, ✓

n(0)], then Lemma A.7 implies that

(1� �)
� (x+ y/⌘)

� (0)
⌘  l(Y n(k + 1) 2 {✓ : bn(✓) = b

n(✓⇤)})  (1 + �)
� (0)

� (y)

1

⌘

for all n > N(�).16 Therefore,

⌘ (1� �)�(x+ y/⌘)/�(0)  l(P n = b
n (✓⇤))  (1 + �)� (0) /� (y) ⌘

for all n > N(�).
If, on the other hand, {✓ : bn(✓) = b

n(✓⇤)} * [✓n
y
, ✓

n(0)], then either [✓n
y
, ✓

n

2y/3] ⇢
{✓ : bn(✓) = b

n(✓⇤)} or [✓n
y/3, ✓

n(0)] ⇢ {✓ : bn(✓) = b
n(✓⇤)} because the set {✓ :

16Observe that N (�) is independent of ✓⇤ and the set [✓n2y/3, ✓
n

y/3].
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b
n(✓) = b

n(✓⇤)} is an interval that extends beyond [✓n
y
, ✓

n(0)]. Therefore, Pr(P n =

b
n (✓⇤) |V = v) � Pr(Y n(k + 1) 2 [✓n

y/3, ✓
n(0)]|V = v) or Pr(P n = b

n (✓⇤) |V =

v) � Pr(Y n(k + 1) 2 [✓n
y
, ✓

n

2y/3]|V = v). The central limit theorem implies that
(1� �) (� (y/3) � 1/2)  Pr(Y n(k + 1) 2 [✓n

y/3, ✓
n(0)]|V = 0) and(1� �) (� (y) �

� (2y/3))  Pr(Y n(k + 1) 2 [✓n
y
, ✓

n

2y/3]|V = 0) for all for all n > N(�). Moreover,
Lemma A.7 implies that (1� �)� (x+ y/⌘) ⌘(� (y/3) � 1/2)/� (0)  Pr(Y n(k +

1) 2 [✓n
y/3, ✓

n(0)]|V = 1) and

(1� �)� (x+ y/⌘) ⌘(� (y)� � (2y/3))/� (0)  Pr(Y n(k + 1) 2 [✓n
y
, ✓

n

2y/3]|V = 1)

for all n > N(�). Therefore, (1� �)� (x+ y/⌘)C⌘/� (0)  l(P n = b
n (✓⇤)) 

1/ (1� �)C for all for all n > N(�) where C = min{� (y/3) � 1/2,� (y) �
� (2y/3)}. Hence picking ✏ such that ✏ < � (x+ y/⌘) ⌘C/� (0), ✏ < C and
1/✏ > � (0) /� (y) ⌘ establishes that H does not aggregate information.

We now argue that if there is no pooling by pivotal types and if the piv-
otal types are distinct, then information is aggregated along a sequence H. De-
note by v 2 {0, 1} the state where the pivotal type is largest and by v

0 the
other state. Our assumption that the pivotal types are distinct implies that
p
nF

n

s
([✓n

s
(v0), ✓n

s
(v)]|0) ! 1. For any ✏ 2 (0, 1/2) define

✓̄
n

✏
:= min{✓ : Pr(Y n

s
(k + 1)  ✓|V = v)} = ✏, (A.3)

✓
n

✏
:= max{✓ : Pr(Y n

s
(k+1) � ✓|V = v

0) = ✏}, and b
n

✏
:= (bn(✓n

✏
)+b

n(✓̄n
✏
))/2. These

definitions imply that ✓n
s
(v0) < ✓

n

✏
< ✓̄

n

✏
< ✓

n

s
(v) for sufficiently large n. This is be-

cause lim
p
nF

n

s

�⇥
✓̄
n

✏
, ✓

n

s
(v)
⇤
|V = v

�
2 (0,1) and lim

p
nF

n

s
([✓n

s
(v0), ✓n

✏
] |V = v

0) 2
(0,1) by the LLN and

p
nF

n

s
([✓n

s
(v0), ✓n

s
(v)]|0) ! 1.

We prove the result through the three claims given below. We first argue that
Pr(Y n

s
(k + 1)  ✓

n

✏
|v) ! 0 and Pr(Y n

s
(k + 1) � ✓̄

n

✏
|v0) ! 0 (Claim A.3). We then

show that the types ✓n
✏

and ✓̄
n

✏
submit distinct bids and therefore b

n (✓n
✏
) < b

n
�
✓̄
n

✏

�

(Claim A.4). We complete the proof by showing that the bid distribution is state
v lies above b

n

✏
and the bid distribution in state v

0 lies below b
n

✏
with probability

converging to one, i.e., bn
✏

separates the two bid distributions (Claim A.5).

Claim A.3. If
p
nF

n

s
([✓n

s
(v0), ✓n

s
(v)] |0) ! 1, then Pr(Y n

s
(k + 1)  ✓

n

✏
|v) ! 0 and

Pr(Y n

s
(k + 1) � ✓̄

n

✏
|v0) ! 0.
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Proof. Note
p
nF

n

s
([✓n

✏
, ✓̄

n

✏
]|0) ! 1 because

lim
p
nF

n

s
([✓n

s
(v0), ✓n

s
(v)]|0) = lim

p
n(F n

s
([✓n

s
(v0), ✓n

✏
]|0)

+ F
n

s
([✓n

✏
, ✓̄

n

✏
]|0) + F

n

s
([✓̄n

✏
, ✓

n

s
(v)]|0)

lim
p
nF

n

s
([✓n

s
(v0), ✓n

s
(v)] |0) = 1, lim

p
nF

n

s
([✓̄n

✏
, ✓

n

s
(v)]|0) 2 (0,1) and

lim
p
nF

n

s
([✓n

s
(v0), ✓n

✏
]|0) 2 (0,1).

Moreover,
p
nF

n

s
([✓n

✏
, ✓

n

s
(v)]|v) ! 1 and

p
nF

n

s
([✓n

s
(v0), ✓̄n

✏
]|v0) ! 1 follow imme-

diately from
p
nF

n

s
([✓n

✏
, ✓

n

s
(v)]|v) �

p
nF

n

s
([✓n

✏
, ✓̄

n

✏
]|v) and

p
nF

n

s
([✓n

s
(v0), ✓̄n

✏
]|v0) �

p
nF

n

s
([✓n

✏
, ✓̄

n

✏
]|v0). Finally, the LLN implies that Pr(Y n

s
(k + 1)  ✓

n

✏
|v) ! 0 and

Pr(Y n

s
(k + 1) � ✓̄

n

✏
|v0) ! 0.

Claim A.4. If the pivotal types are distinct and there is no pooling by pivotal
types, then b

n (✓n
✏
) < b

n
�
✓̄
n

✏

�
for all sufficiently large n.

Proof. Monotonicity implies b
n (✓n

✏
)  b

�
✓̄
n

✏

�
. Suppose b

nk (✓nk
✏
) = b

n
�
✓̄
nk
✏

�
= b

nk
p

for all nk along a subsequence. Then, limPr
�
P

nk = b
nk
p
|V = v

�
� ✏ > 0 for each

v = 0, 1 by Claim A.3. However, this means that there is pooling by pivotal types
contradicting the assumption of the claim.

Claim A.5. If the pivotal types are distinct and there is no pooling by pivotal
types, then H aggregates information.

Proof. Fix any ✏ 2 (0, 1/2). Claim A.4 implies b
n(✓n

✏
) < b

n

✏
< b

n(✓̄n
✏
) for suf-

ficiently large n. Given this definition, we have Pr (P n  b
n

✏
|V = v)  ✏ and

limPr (P n � b
n

✏
|V = v

0)  ✏. Moreover,
Z

p<bn✏

Pr (P n = p|V = v)

Pr (P n = p|V = v0)
Pr (P n = p|V = v

0) dp =

Z

p<bn✏

Pr (P n = p|V = v) dp  ✏

Therefore, Pr(P n 2 {p < b
n

✏
: Pr(V=v|Pn=p)
Pr(V=v0|Pn=p) >

p
✏}|V = v

0) 
p
✏. Hence,

limPr(P n 2 { Pr (V = v|P n = p)

Pr (V = v0|P n = p)
>

p
✏}|V = v

0) 
p
✏+ limPr (P n � b

n

✏
|V = v

0) < 2
p
✏.

Finally, for any ✏
0
>

p
✏ we find limPr(P n 2 { Pr(V=v|Pn=p)

Pr(V=v0|Pn=p) > ✏
0}|V = v

0) < 2
p
✏.

Because, ✏ is arbitrary, we conclude that limPr(P n 2 { Pr(V=v|Pn=p)
Pr(V=v0|Pn=p) > ✏

0}|V =
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v
0) = 0 and a symmetric argument establishes the result for V = v.

Lemma A.8. If an equilibrium sequence aggregates information and limE[P n] >

0, then P
n

converges in probability to V .

Proof. We prove the result through two claims. In the first claim we show that
if information is aggregated and the expected price is positive, then the pivotal
types must be ordered. In the second claim we show that if the pivotal types are
ordered, then price must converge to value.

Claim A.6. If H aggregates information and limE[P n] > 0, then
p
n(F n

s
(✓n

s
(1)|1)�

F
n

s
(✓n

s
(0)|1)) ! 1.

Proof. If H aggregates information, then
p
n |F n

s
(✓n

s
(1)|1)� F

n

s
(✓n

s
(0)|1)| ! 1

and there is no pooling by pivotal types by Lemma 2.2. Pick a subsequence (abus-
ing notation, we omit the relabeling of this subsequence) and assume, contrary
to the claim that

p
n (F n

s
(✓n

s
(0)|1)� F

n

s
(✓n

s
(1)|1)) ! 1 along this subsequence.

Moreover, suppose that limE[P n|V = 0] and limE[P n|V = 1] exist along this
subsequence.

Recall the definition of b
n

✏
given by Eq. A.3. The facts that H aggregates

information and
p
n (F n

s
(✓n

s
(0)|1)� F

n

s
(✓n

s
(1)|1)) ! 1 together imply that

limE[P n|V = 0] � limE[P n] � limE[P n|V = 1]

and in particular limE[P n|V = 0] � limE[P n] > 0. This is because E[P n|V =

0] � (1 � ✏)bn
✏

and E[P n|V = 1}  (1 � ✏)bn
✏
+ ✏ together imply that E[P n|V =

0] + ✏ � E[P n|V = 1] for each ✏. Consider any type that submits a bid equal
to b

n

✏
. We have Pr (P n

< b
n

✏
|V = 1) � 1 � ✏ and Pr (P n

> b
n

✏
|V = 0) � 1 � ✏

by definition. Therefore, u(bn
✏
|✓) � Pr(V = 1|✓) (1� ✏) (1� E[P n|V = 1]) �

Pr(V = 0|✓)✏ for any type ✓. As ✏ is arbitrary, we find lim u(bn(✓)|✓) � Pr(V =

1|✓) (1� limE[P n|V = 1]) for each ✓.
For a given ✏ 2 (0,s), pick any type ✓ > ✓s(0) � ✓s(1) such that F̄

n

s
(✓|0) <

✏. Note that limPr (P n  b
n(✓)|V = v) = 1 for v = 0, 1. This type wins with

probability at least s � ✏ in state V = 0. This is because if the type ✓ bids
in a pool with ✓s(0), then the probability of winning is at least s � ✏ in state
V = 0 by Lemma A.2. Otherwise, this type wins with probability one in both
states. Therefore, lim u(bn(✓)|✓)  Pr(V = 1|✓) (1� limE[P n|V = 1]) � (s �
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✏) Pr(V = 0|✓) limE[P n|V = 0] < Pr(V = 1|✓) (1� limE[P n|V = 1]) leading to a
contradiction.

Claim A.7. Suppose H aggregates information. If limE[P n] > 0 or if
p
n(F n

s
(✓n

s
(1)|1)�F

n

s
(✓n

s
(0)|1)) ! 1, then limE[P n|V = 0] = 0 and limE[P n|V =

1] = 1.

Proof. Information aggregation and limE[P n] > 0 together imply that
p
n(F n

s
(✓n

s
(1)|1) � F

n

s
(✓n

s
(0)|1)) ! 1 by the previous claim. Assume to the con-

trary that limE[P n|V = 0] > 0 along a convergent subsequence. There are two
cases to consider: 1) There is an ✏ < ⌘ limE[P n|V = 0] and a subsequence such
that Pr(P n = b

n(✓̄n
✏
)|V = 1) ! 0; or alternatively 2) lim inf Pr(P n = b

n(✓̄n
✏
)|V =

1) > 0 for all ✏ < ⌘ limE[P n|V = 0] where ✓̄
n

✏
is the type defined in Eq. A.3.

Case 1: Our assumption that Pr(P n = b
n(✓̄n

✏
)|V = 1) ! 0 implies

limPr(P n
> b

n
�
✓̄
n

✏

�
|V = 1) = limPr

�
Y

n

s
(k + 1) > ✓̄

n

✏
|V = 1

�
= 1� ✏.

Therefore,

lim u(bn
�
✓̄
n

✏

�
|✓̄n

✏
)  lim

�
Pr(V = 1|✓̄n

✏
)✏� Pr(V = 0|✓̄n

✏
)E[P n|V = 0]

�
.

However, limE[P n|V = 0] > 0 implies that lim u
�
b
n
�
✓̄
n

✏

�
|✓̄n

✏

�
< 0 because ✏ <

⌘ limE[P n|V = 0] and because Pr(V=0|✓̄n✏ )
Pr(V=1|✓̄n✏ )

= 1
l(✓̄n✏ )

> ⌘ leading to a contradiction.
Therefore, limE[P n|V = 0] = 0.

Case 2: Our assumption lim inf Pr(P n = b
n(✓̄n

✏
)|V = 1) > 0 implies

limPr(Y n

s
(k + 1) 2

�
✓ : bn (✓) = b

n
�
✓̄
n

✏

� 
|V = 1) > 0.

In other words, ✓̄n
✏

bids in a pool and lim
p
nF

n

s
({✓ : bn (✓) = b

n
�
✓̄
n

✏

�
}|V = 1) > 0.

However, such a pool is not possible if limPr(P n = b
n(✓̄n

✏
)|V = 1) > 0 and

limPr(P n = b
n(✓̄n

✏
)|V = 0) = 0 by Lemma A.4.

Information aggregation and
p
n(F n

s
(✓n

s
(1)|0)�F

n

s
(✓n

s
(0)|0)) ! 1 together im-

ply that limPr(P n  b
n(✓n

s
(0))|V = 1) = 0. Therefore, lim u(bn (✓n

s
(0)) |✓n

s
(0)) =

0. However, 0 = lim u(bn (✓n
s
(0)) |✓n

s
(0)) � lim u(b = 1|✓n

s
(0)) = limPr(V =

1|✓n
s
(0))(1� E[P n|V = 1]), i.e., limE[P n|V = 1] = 1.

The following lemma also provides conditions for information aggregation that
we frequently use.
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Lemma A.9. Fix a sequence of bidding equilibria H. If Fs(✓s(1)|1) > Fs(✓s(0)|1)
or if Fs(1|1) � Fs(1|0) and Fs(1|1) > s, then there is no pooling by pivotal types

and price converges to value.

Proof. For the following argument, note that Fs (1|1) � Fs (1|0) and Fs (1|1) >

s together imply that Fs (✓s(1)|1) > Fs (✓s(0)|1) (see Lemma A.3). Under the
lemma’s assumptions the pivotal types are distinct and pooling by pivotal types is
incompatible with equilibrium by Lemma A.3. However, then Lemma 2.2 implies
that information is aggregated and Claim A.7 further implies that price converges
to value because Fs (✓s(1)|1) > Fs (✓s(0)|1).

A.2. The Market Selection Lemmata. This section characterizes market
selection. Throughout the section, we define a

H

s
(✓) := a

H(✓) and a
H

r
(✓) := 1 �

a
H(✓) to simplify exposition.

Lemma A.10. Suppose that a
H

m
(✓0) > 0 for some type ✓

0
in an equilibrium H.

If u
H(m, b(✓0)|V = 0) < u

H(m0
, b|V = 0), for m 6= m

0
and some bid b � 0, then

u(m, b(✓0)|✓) > u(m0
, b|✓) for all ✓ > ✓

0
such that ✓ /2 E(✓0).

Proof. Fix an equilibrium H. For the remainder of the proof we suppress reference
to the equilibrium H. Note that u(m, b

0|✓, V = v) = u(m, b
0|V = v) for any b

0, ✓
and v. Writing down the profit for type ✓ from bidding b in market m, we obtain
u(m, b|✓) = u(m, b|V = 0)Pr(V = 0|✓) + u(m, b|V = 1)Pr(V = 1|✓). Our initial
assumption that am(✓0) > 0 implies u(m, b(✓0)|✓0) � u(m0

, b|✓0) � 0. Moreover,
u(m, b(✓0)|✓0) � u(m0

, b|✓0) � 0 and u(m, b(✓0)|V = 0) < u(m0
, b|V = 0) together

imply that u(m, b(✓0)|V = 1)�u(m0
, b|V = 1) > 0. Hence, if ✓ > ✓

0 and ✓ /2 E(✓0),
then

(u(m, b(✓0)|V = 0)� u(m0
, b|V = 0)) Pr(V = 0|✓)+

(u(m, b(✓0)|V = 1)� u(m0
, b|V = 1)) Pr(V = 1|✓) >

(u(m, b(✓0)|V = 0)� u(m0
, b|V = 0)) Pr(V = 0|✓0)+

(u(m, b(✓0)|V = 1)� u(m0
, b|V = 1)) Pr(V = 1|✓0)

= u(m, b(✓0)|✓0)� u(m0
, b|✓0) � 0

because Pr(V = 1|✓) > Pr(V = 1|✓0).

Below we define ✓̂m for m 2 {s, r} as the smallest type which wins a good with
positive probability if V = 0 at the limit as n grows large, i.e., this type is the
smallest “active” type in state V = 0.
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Definition A.1. Fix a sequence of strategies {Hn}. If Fm(1|0) � m, let ✓n
m
(✏) :=

inf {✓ : Hn ([0, 1]⇥m⇥ (bn(✓), 1] |0) < m � ✏}, ✓̂m(✏) := lim sup ✓n
m
(✏), and ✓̂m :=

inf✏>0 ✓m(✏). If Fm(1|0) < m, let ✓̂m = inf {✓ : Fm(✓|0) > 0}, and ✓̂m = 1 if the set
is empty.

Suppose that Fs(1|0) � s. The definition above selects type ✓̂s = ✓s(0) if
the bidding function b

n is strictly increasing at ✓
n

s
(0) for sufficiently large n. The

definition has more bite if, on the other hand, ✓
n

s
(0) submits a pooling bid. If

✓
n

s
(0) submits a pooling bid, then there are types ✓n

p
 ✓

n

s
(0)  ✓

n

p
who submit the

same bid as ✓n
s
(0). There are two cases to consider: In the first case ✓s(0) = lim ✓

n

p
.

Then the definition selects ✓̂s = ✓s(0). In the second case, if ✓s(0) < lim ✓
n

p
, then

the definition selects ✓̂s = lim ✓
n

p
.

Lemma A.11. Suppose that for an equilibrium sequence H we have that

limE(P n

s
|0) = 0 and limE(P n

r
|0) > 0, then lim a

n

r
(✓) = 1 for any ✓ > ✓̂r.

Proof. The fact that limn E(P n

s
|V = 0) = 0 implies that lim u

n(s, b|V = 0) = 0

for any b. Pick an ✏ > 0 and a sequence of types ✓
n 2 [✓̂n

r
(✏/2), ✓̂n

r
(✏)] such that

the limits lim ✓
n, lim ✓̂

n

r
(✏/2), lim ✓̂

n

r
(✏) all exist and a

n

r
(✓n) > 0. The probability

that P
n

r
 b

n

r
(✓n) converges to one in state 0. Therefore, the probability that

✓
n wins an object in state 0 converges to one if this type does not bid in an

atom along the sequence. Otherwise, the probability that this type wins is at
least ✏/2 (see Lemma A.2 for this calculation). Hence, lim u(r, bn

r
(✓n)|V = 0) 

� ✏

2 limE [P n

r
|V = 0] < 0 = lim u

n(s, b|V = 0). Lemma A.10 then implies that
lim u(r, bn

r
(✓n)|✓) > lim u(s, b|✓) for any b and any type ✓ > lim ✓

n such that
✓ /2 E(lim ✓

n) and therefore ar(✓) = 1. Similarly, if ✓ > lim ✓
n and ✓ 2 E(lim ✓

n),
then a

n

r
(✓) = 1. This is because we can pick, without loss of generality, a pure and

increasing representation of the market selection strategy a
n

r
over E(lim ✓

n). Since
✏ is arbitrary and ✓̂r = inf✏ ✓̂r(✏) we conclude that lim a

n

r
(✓) = 1 for any ✓ > ✓̂r.

Lemma A.12. If lim a
n

r
(✓) = 1 for all ✓ > ✓en and s > ̄, then either ✓s(0) >

✓s(1) or s > Fs(1|1). Alternatively, if lim a
n

r
(✓) = 0 for all ✓ < ✓en and s < ̄,

then ✓s(0) < ✓s(1).

Proof. We argue that lim a
n

r
(✓) = 1 for all ✓ > ✓en, s  Fs(1|1), and s > ̄,

together imply that ✓s(0) � ✓s(1) > 0. Let L1 denote the set of measurable
functions ↵ : [0, 1] ! [0, 1] and consider the optimization problem

W (s, ✓en) = max
↵2L1

R
✓en

0 ↵(✓)dF (✓|1)
R

✓en

0 ↵(✓)dF (✓|0)
s.t.

Z
✓en

0

↵(✓)dF (✓|1) = s.
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MLRP implies that W (s, ✓en) =
F ([✓0,✓en]|1)
F ([✓0,✓en]|0) where ✓

0 is the type such that
F ([✓0, ✓en]|1) = s.17 If s > ̄en = F ([✓⇤ (✓en) , ✓en] |0) = F ([✓⇤ (✓en) , ✓en] |1), then
✓
0
< ✓

⇤(✓0), and MLRP implies F ([✓0, ✓⇤ (✓en)] |0) > F ([✓0, ✓⇤ (✓en)] |1). Therefore,
W (s, ✓en) < 1.

Assume s > Fs(1|1) and define ↵⇤(✓) as the function which is equal to zero for
all ✓  ✓s(1) and equal to as(✓) for all ✓ > ✓s(1). This function ↵

⇤ is feasible for the

above maximization problem. Therefore, we obtain F̄s(✓s(1)|1)
F̄s(✓s(1)|0) =

R ✓en
✓s(1)

as(✓)dF (✓|1)
R ✓en
✓s(1)

as(✓)dF (✓|0)
=

R ✓en
0 ↵

⇤(✓)dF (✓|1)
R ✓en
0 ↵⇤(✓)dF (✓|0)

 W (s, ✓en) < 1. Hence, ✓s(0) > ✓s(1).
We now argue that if lim a

n

r
(✓) = 0 for all ✓ < ✓en and s < ̄, then ✓s(0) <

✓s(1). Define ✓
0 as the type such that F ([✓0, ✓en] |1) = s. Consider the following

minimization problem W (s, ✓
0) = min↵2L1

R 1
✓0 ↵(✓)dF (✓|1)

R 1
✓00 ↵(✓)dF (✓|0)

s.t.
R 1

✓0 ↵(✓)dF (✓|1) = s.

MLRP implies that W (s, ✓
0) = F ([✓0,✓en]|1)

F ([✓0,✓en]|0) . Also, if s < ̄ = F ([✓⇤ (✓en) , ✓en] |0) =
F ([✓⇤ (✓en) , ✓en] |1), then ✓

0
> ✓

⇤ (✓en), and hence W (s, ✓
0) > 1 by MLRP. De-

fine ↵
⇤(✓) as the function that is equal to zero for all ✓  ✓s(1) and equal to

as(✓) for all ✓ > ✓s(1). This ↵
⇤ is feasible for the minimization problem. There-

fore, F̄s(✓s(1)|1)
F̄s(✓s(1)|0) =

R 1
✓s(1)

as(✓)dF (✓|1)
R 1
✓s(1)

as(✓)dF (✓|0)
=

R 1
✓0 ↵

⇤(✓)dF (✓|1)
R 1
✓0 ↵

⇤(✓)dF (✓|0)
� W (s, ✓

0) > 1 and hence

✓s(1) > ✓s(0).

A.3. Proof of Theorem 3.1. In the following lemma we characterize behavior
in market r. We then use this lemma to prove Theorem 3.1.

Lemma A.13. If c > 0, then Fr(1|0) < Fr(1|1)  r along any equilibrium

sequence. Moreover, the price in market r converges to c almost surely if V = 0

and converges to a random variable Pr(1) if V = 1. The random variable Pr(1) is

equal to c with probability q > 0 and is equal to 1 with the remaining probability.

Proof. The following three steps will together prove the result.
Step 1. Fr(1|0) < Fr(1|1)  r. We will argue that Fr(1|0) < Fr(1|1). If

Fr(1|0) < Fr(1|1), then we must have Fr(1|1)  r. This is because Fr(1|0) <

Fr(1|1) and Fr(1|1) > r together imply that P n

r
! 1 if V = 1 by Lemma A.9. But

this is not possible because all the bidders in market r would then earn negative
profits.

We now show Fr(1|0) < Fr(1|1). First, suppose that Fr(1|0) > Fr(1|1). This
implies that Fs(1|0) < Fs(1|1). There are two cases: Fs(1|1) > s and Fs(1|1) 
s. If Fs(1|1) > s, then P

n

s
! 0 if V = 0 by Lemma A.9, and if Fs(1|1)  s,

17In other words, the function ↵⇤ (✓), which is equal to one if ✓ � ✓0 and equal to zero otherwise
is a maximizer of the problem.
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then again P
n

s
! 0 if V = 0 because Fs(1|0) < s. However, if P n

s
! 0 when

V = 0, then ar(✓) = 1 for all ✓ > ✓̂r by Lemma A.11. However, if Fr(1|0) < r,
then ar(✓) = 1 for all ✓ > ✓̂r implies that Fr(1|1) > Fr(1|0), which contradicts
our initial assumption. On the other hand, if Fr(1|0) � r, then Fr(1|1) > r

However, Fr(1|1) > r and ar(✓) = 1 for all ✓ > ✓̂r together imply that P
n

r
! 1 if

v = 1 by Lemma A.9, which is not possible.
Second, suppose that Fr(1|0) = Fr(1|1). There are two cases to consider:

Fr(1|1) > r and Fr(1|1)  r. If Fr(1|1) > r, then P
n

r
! 1 if V = 1 by Lemma

A.9, which is not possible. Alternatively, If Fr(1|1)  r, then Fs(1|1) > s.
However, Fs(1|0) = Fs(1|1) and Fs(1|1) > s together imply by Lemma A.9 that
P

n

s
! 0 if V = 0. However, as argued previously, if P

n

s
! 0 if V = 0 and if

Fr(1|0)  r, then almost all types in market r win an object when V = 0 at a
price which is at least c. Therefore, ar(✓) = 1 for all ✓ > ✓̂r by Lemma A.11. Thus,
we conclude that Fr(1|1) > Fr(1|0) because ar(✓) = 1 for all ✓ > ✓̂r. However,
this contradicts that Fr(1|0) = Fr(1|1), as we initially assumed.

Step 2. Assume lim
p
n (F n

r
(1|1)� r) > �1 –i.e., there are more bidders

than objects in market r with positive probability in state 1. We have b
n

r
(✓) ! 1

for any type ✓ that bids in market r.
For any ✏ > 0, pick ✓

n such that Pr(Y n�1
r

(nr) 2 (0, ✓n)|V = 1)  ✏, and
recall that that Y

n�1
r

(nr) = 0 if there are fewer than nr + 1 bidders in mar-
ket r. For sufficiently small ✏, limPr(Y n�1

r
(nr) � ✓

n|V = 1) > 0 because
limPr(Y n�1

r
(nr) = 0|V = 1) < 1 by assumption.

We argue that lim b
n

r
(✓) = 1 for any ✓ > lim ✓

n. Any type ✓
n in this sequence

can ensure winning an object by submitting a bid equal to one in the auction.
Therefore, u(r, bn

r
(✓n)|✓n) = E[V � P

n

r
|bn

r
(✓n) win, ✓] Pr(bn

r
(✓n) win|✓) � u(r, b =

1|✓n). Noticing that,

u(r, b = 1|✓n) = E[V � P
n

r
|bn

r
(✓n) win, ✓] Pr(bn

r
(✓n) win|✓)+

E[V � P
n

r
|bn

r
(✓n) lose, ✓] Pr(bn

r
(✓n) lose|✓)

we find E [V � P
n

r
|bn

r
(✓n) lose, ✓] Pr (bn

r
(✓n) lose|✓)  0.

First, note that Pr(P n

r
� b

n

r
(✓n)|V = 0)  e

� �2nFn
r (1|0)

2+� by applying Chernoff’s
inequality (see Janson et al. (2011, Theorem 2.1)) where � := r

Fn
r (1|0)�1. Therefore,

Pr(P n

r
� b

n

r
(✓n)|V = 0)  e

� �2nFn
r (1|0)

2+� . Suppose that limPr(P n

r
= b

n

r
(✓n)|V = 1) =

0. Then Pr(bn
r
(✓n) lose|V = 1) = limPr(P n

r
� b

n

r
(✓n)|V = 1) > 0. The fact that
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E [V � P
n

r
|P n

r
� b

n

r
(✓n), ✓] Pr (P n

r
� b

n

r
(✓n)|✓)  0 implies that

lim(1� E[P n

r
|P n

r
� b

n

r
(✓n), V = 1])  c lim

Pr(P n

r
� b

n

r
(✓n)|V = 0)

Pr(P n
r
� bn

r
(✓n)|V = 1)l (✓n)

= c lim
e
� �2nFn

r (1|0)
2+�

Pr(P n
r
� bn

r
(✓n)|V = 1)l (✓n)

= 0,

i.e., lim b
n

r
(✓) = 1 for almost all ✓ > lim ✓

n. Alternatively, suppose that limPr(P n

r
=

b
n

r
(✓n)|V = 1) > 0. If limPr(P n

r
= b

n

r
(✓n)|V = 1) > 0, then Lemma A.2 implies

that there is a constant A such that Pr(P n

r
= b

n

r
(✓n), bn

r
(✓n) lose|V = 1) � A/

p
n

for all sufficiently large n. Therefore, (1� b
n

r
(✓n)) Pr(P n

r
= b

n

r
(✓n), bn

r
(✓n) lose|V =

1)l(✓n)� cPr(bn
r
(✓n) lose|V = 0)  0, i.e., lim(1� b

n

r
(✓n))  lim c

A

p
ne

� �2nFn
r (1|0)

2+� =

0. Therefore, lim b
n

r
(✓) = 1 for all ✓ � lim ✓

n.
Step 3 The price in market r converges to c almost surely if V = 0 and

converges to a random variable Pr(1) if V = 1. The random variable Pr(1) is
equal to c with probability q > 0 and is equal to 1 with the remaining probability.

The fact that the price converges to c almost surely if V = 0 follows from the
LLN and the fact that Fr(1|0) < r. Also, note that lim

p
n (F n

r
(1|1)� r) < 1.

This is because if lim
p
n (F n

r
(1|1)� r) = 1, then the price clears at the bid of

some type with probability one in state 1. However, the previous claim showed
that b

n

r
(✓) ! 1 for all ✓. But then Pr(1) ! 1, which implies that all bidders

make a loss. The fact that lim
p
n (F n

r
(1|1)� r) < 1 implies that Pr(1) is equal

to c with probability q > 0. With the remainder of the probability, i.e., with
probability 1 � q, the auction clears at the bid of some type ✓ and b

n

r
(✓) ! 1.

Therefore, the auction price is equal to 1 with probability 1� q.

Proof of Theorem 3.1. Fix an equilibrium sequence H. If c > 0, then information
is not aggregated in market r by Lemma A.13. We now prove the other assertions
in the theorem.

If c > 0 and s > ̄, then information is not aggregated in market s.
Assume, on the way to a contradiction, that information is aggregated in market
s. First suppose that limn E [P n

s
] = 0. Note that limn E [P n

r
|V = 0] = c > 0

by Lemma A.13. Therefore, if limn E [P n

s
] = 0, then all types would prefer to

submit a bid equal to one in market s for all sufficiently large n. But if all types
bid in auction s, then Fs (✓s(1)|1) > Fs (✓s(0)|1) and Lemma A.9 implies that
limn E [P n

s
|V = 0] = 0, limn E [P n

s
|V = 1] = 1 and therefore limn E [P n

s
] = 1/2

which contradicts that limn E [P n

s
] = 0. Hence, if information is aggregated in

auction, then price converges to value by Lemma A.8.
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If price converges to value in auction s, then lim u
n(s, bn

s
(✓)|✓) = 0 for all ✓. We

first argue that lim a
n

r
(✓) = 1 for all ✓ > ✓en. Recall that ✓̂r is the smallest type that

wins and object in state 0 in market r (definition A.1). If ✓ > ✓̂r, then lim a
n

r
(✓) = 1

by Lemma A.11 because limn E [P n

r
|V = 0] > 0 and limn E [P n

s
|V = 0] = 0. Also,

note that ✓̂r  ✓en because if ✓̂r > ✓en, then limn E [P n

r
|V = 1] = c because ✓F

r
(1) 

✓en by Definition 3.1. However, if limn E [P n

r
|V = 1] = c, then lim u

n(r, bn
r
(✓)|✓) >

0 for all ✓ 2 (✓en, ✓̂r), contradicting that ✓̂r  ✓en.
If Fs(1|1) < s, then P

n

s
! 0 in state 1 showing that information is not

aggregated in market s. Instead suppose that Fs(1|1) � s. Lemma A.12 shows
that if lim a

n

r
(✓) = 1 for all ✓ > ✓en and if s > ̄, then ✓

n

s
(0) � ✓

n

s
(1) � 0 for all

sufficiently large n. If Fs(1|1) � s, then ✓
n

s
(0)� ✓

n

s
(1) � 0 for all sufficiently large

n; however, this contradicts our initial assumption that information is aggregated
in market s. This is because information aggregation in market s implies that
✓
n

s
(1)� ✓

n

s
(0) > 0 for all sufficiently large n.

If c > 0 and s < ̄, then information is aggregated in market s. We
prove this by looking at two cases. First, assume that

✓en = inf {✓ : Pr (V = 1|✓) > c} .

The fact that s < ̄en implies that Fs (✓s(1)|1) > Fs (✓s(0)|1), even if all ✓ � ✓en

choose market r by Lemma A.12. If Fs (✓s(1)|1) > Fs (✓s(0)|1), then Lemma A.9
implies that information is aggregated. Second, assume that ✓en = ✓

F

r
(1). Lemma

A.13 implies that Fr (1|1)  r. However, if Fr (1|1)  r, then Lemma A.12
implies that Fs (✓s(1)|1) > Fs (✓s(0)|1). If Fs (✓s(1)|1) > Fs (✓s(0)|1), then Lemma
A.9 implies that information is aggregated.

A.4. Analysis of the Illustrative Example. Here we construct equilibria
under the assumptions of Section 4 for c 6= 1/2. As we noted earlier, no ✓ 2 E(0)
bids in market r; if c > 1/2, then no ✓ 2 E(1/2) bids in market r; bn

m
(✓) = 0 and

b
n

m
(✓) = 1 for each ✓ 2 E(0) and ✓ 2 E(1), respectively, in any equilibrium. For

each ✓ 2 E(1/2), let

b
n

m
(✓) :=

h (Y n�1
m

(km) = ✓|V = 1)

h (Y n�1
m

(km) = ✓|V = 0)
/(1 +

h (Y n�1
m

(km) = ✓|V = 1)

h (Y n�1
m

(km) = ✓|V = 0)
). (A.4)

where h(Y n�1
m

(km) = ✓|V = 1) := d

d✓
Pr(Y n�1

m
(km)  ✓|V = 1), i.e., h is a binomial

density.

Proposition A.1. An equilibrium exists for each n and in any equilibrium all
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types ✓ bid b
n

m
(✓). If 1 � g > r, then information is aggregated in both markets.

If 1 � g < r, then all equilibrium sequences converge to the following outcome:

If V = 0, then P
n

r
! c with probability one. If V = 1, then P

n

r
converges to

a random variable Pr that is equal to c with probability c/(1 � c) and equal to

one with the remaining probability. In market s, P
n

s
converges in distribution to

a random variable Ps and Pr[Ps  p|V = v] is atomless, increasing on [0, 1] for

v = 0, 1. If c > 1/2, then E[Pr|V = 1] = E[Pr|V = 0] = c, E[Ps|V = 1] = c, and

E[Ps|V = 0] = 1 � c. If c < 1/2, then E[Pr|V = 1] = E[Ps|V = 1] = 1 � c, and

E[Pr|V = 0] = E[Ps|V = 0] = c.

Proof. Step 1. All types ✓ 2 E(1/2) bid b
n

m
(✓) in any bidding equilibrium.

If F n

m
(E(1)|1) > 0, then the bidding distribution has no atoms except at b = 1

and b = 0 and therefore bn
m
(✓) is given by Eq. (A.4) for each ✓ 2 E(1/2) by Lemma

2.1. To see this, define an auxiliary type distribution G where all types that choose
market m

0 6= m are assigned signal ✓ 2 E(0), i.e., G(E(1/2)|v) = Fm(E(1/2)|v),
G(E(1)|v) = Fm(E(1)|v) and G(E(0)|v) = 1 � G(E(1/2)|v) � G(E(1)|v). Bidding
in market m under G is the same as Fm except at b = 0 and G satisfies MLRP.
Therefore, no type ✓ 2 E (1/2) can bid in an atom because otherwise we have a
contradiction to Lemma 7 in Pesendorfer and Swinkels (1997). If F n

m
(E(1)|1) =

0, then Eq. (A.4) implies b
n

m
(✓) = 1/2 for each ✓ 2 E(1/2). Any type ✓ 2

E(1/2) would always under cut any atom b > 1/2 and out bid any atom b < 1/2.
Therefore, types ✓ 2 E(1/2) can bid in an atom only at b = 1/2. If the bid
distribution is increasing over an interval, these types bid b

n

m
(✓) = 1/2 by Lemma

2.1. Therefore, all types ✓ 2 E(1/2) bid 1/2 as required.
Step 2. There exists ✓1 2 E(1/2), ✓2 2 E(1) and an equilibrium where all

types ✓ 2 [0, ✓1)[ (2/3, ✓2] bid b
n

s
(✓) in market s and all others bid b

n

r
(✓) in market

r. The proof, which uses Kakutani’s fixed point theorem, is in the online appendix.
Step 3. We have u

n(✓) ! 0 for any ✓ 2 E(1/2).
Pick m such that limF

n

m
(E(1)|1) + F

n

m
(E(1/2)|1) > m. If F n

m
(E(1)|1) > 0 for

all sufficiently large n, then b
n

m
(·) is increasing in ✓ 2 E(1/2). Therefore, there

exists a ✓
0 2 E(1/2) that bids in market m and wins an object in state V = 1

with probability converging to zero. This type’s equilibrium payoff u
n(✓0) !

0. Consequently, u
n(✓) = u

n(✓0) ! 0 for any ✓ 2 E(1/2). Alternatively, if
F

n

m
(E(1)|1) = 0 for all large n, then all ✓ 2 E(1/2) bid 1/2 and hence u

n(✓) ! 0

for any ✓ 2 E(1/2).
Step 4. Suppose

p
nF̄

n

m
(E (1) |V = 1)/� ! x 2 [0,1] and there is a sequence

{✓n} ⇢ E (1/2) with lim
p
n(m�F̄

n

m
(✓n|V = 1))/� = y, where � =

p
m (1� m).
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If x < 1, then lim b
n

m
(✓n) = �(y)

�(y+x)/(1 +
�(y)

�(y+x)), limPr(P n

m
 b

n

m
(✓n) |V = 1) =

�(y) and limPr(P n

m
 b

n

m
(✓n) |V = 0) = �(y+ x) by Lemma A.6. If x = 1, then

b
n

m
(✓n) ! 1 because

p
nh (Y n�1

m
(km) = ✓

n|V = 1)p
nh (Y n�1

m
(km) = ✓n|V = 0)

! �(y)p
nh (Y n�1

m
(km) = ✓n|V = 0)

= 1

since
p
nh(Y n�1

m
(km) = ✓

n|V = 0) ! 0.
Step 5. If c > 1/2, then F

n

s
(E(1)|1) > 0. If we further assume 1 � g < r,

then lim
p
nF

n

s
(E(1)|1) < 1 and P

n

r
! c in both states.

First we show F
n

s
(E(1)|1) > 0. If F n

s
(E(1)|1) = 0, then b

n

s
(✓) = 1/2 for any

✓ 2 E(1/2). However then any type ✓ 2 E(1) can get an object from auction s

with probability one at a price not more than 1/2. Therefore, if F n

s
(E(1)|1) = 0,

then the payoff from participating in auction s is strictly greater than bidding in
market r for ✓ 2 E(1) and this contradicts F

n

s
(E(1)|1) = 0.

If 1� g < r, then P
n

r
! c in both states because limF

n

r
(E(1)|1)  1� g < r

and F
n

r
(E(1/2)|1) = 0. Now we show that 1�g < r implies lim

p
nF

n

s
(E(1)|1) <

1. Assume to the contrary. Step 4, limF
n

s
(E(1/2)|1) = g > s, and

lim
p
nF

n

s
(E(1)|1) = 1 together imply that P

n

s
! 1 in state V = 1. However,

then no type ✓ 2 E(1) would choose market s for sufficiently large n because
P

n

r
! c leading to a contradiction.
Step 6. If c < 1/2, then F

n

s
(E(1)|1) > 0 for all sufficiently large n. If we

further assume 1� g < r, then lim
p
nF

n

s
(E(1)|1) < 1, P n

r
! c in state V = 0,

and limE [P n

r
|V = 1] = 1� c.

We first show if 1 � g < r and limF
n

s
(E(1)|1) = 0, then limF

n

r
(E(1/2)|1) =

r + g � 1, P n

r
! c in state V = 0, and limE [P n

r
|V = 1] = 1 � c. Subsequently,

we show that if 1 � g < r, then F
n

s
(E(1)|1) > 0 for all sufficiently large n and

lim
p
nF

n

s
(E(1)|1) < 1.

First, suppose that limF
n

r
(E(1/2)|1) < r + g � 1. Then the price in market

r converges to c in both states and each ✓ 2 E(1/2) that bids in market r wins an
object with probability one at a price converging to c. However, then lim u

n(✓) =

1/2 � c > 0 for any such type but this contradicts Step 3. Suppose instead
that limF

n

r
(E(1/2)|1) > r + g � 1. Then the price in market r converges to

one in state V = 1 by Step 4. But this would imply that the profit of any
✓ 2 E(1/2) that bids in market r is negative again leading to a contradiction.
Hence, limF

n

r
(E(1/2)|1) = r + g � 1 which further implies P

n

r
! c in state

V = 0 because limF
n

r
(E(1/2)|0) < r and F

n

r
(E(1)|0) = 0. Since the profit for
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any ✓ 2 E(1/2) from bidding in market r converges to zero by step 3 we further
establish that limE [P n

r
|V = 1] = 1� c.

We next show F
n

s
(E(1)|1) > 0 for all sufficiently large n. On the way to

a contradiction assume that F
n

s
(E(1)|1) = 0 for all sufficiently large n. This

implies that limE [P n

s
|V = 1] � limE [P n

r
|V = 1] because otherwise any type

✓ 2 E(1) would prefer to bid in market s instead of r for all sufficiently large
n. If 1 � g > r and F

n

s
(E(1)|1) = 0, then Pr ! 1 and Ps ! 1/2. But this

contradicts limE [P n

s
|V = 1] � limE [P n

r
|V = 1]. On the other hand if 1� g < r

and F
n

s
(E(1)|1) = 0 for all sufficiently large n, then b

n

s
(✓) = 1/2 for ✓ 2 E(1/2) for

all sufficiently large n. Hence, limE [P n

s
|V = 1]  1/2 < limE [P n

r
|V = 1] = 1� c

again leading to a contradiction.
We now show that if 1 � g < r, then lim

p
nF

n

s
(E(1)|1) < 1. Assume

lim
p
nF

n

s
(E(1)|1) = 1. If F

n

s
(E(1)|1) + F

n

s
(E(1/2)|1) > s, then P

n

s
! 1 in

state V = 1 by Step 4. However, limE [P n

r
|V = 1]  1 � c < 1, which implies

that no ✓ 2 E(1) would bid in market s for sufficiently large n, contradicting
lim

p
nF

n

s
(E(1)|1) = 1. On the other hand, if F n

s
(E(1)|1) + F

n

s
(E(1/2)|1)  s,

then P
n

s
! 0 in state V = 0 by Step 4. The fact that ✓ 2 E(1) bids in market s

implies that limE [P n

s
|V = 1]  limE [P n

r
|V = 1]  1 � c. But then bidding one

in market s gives any ✓ 2 E(1/2) positive profit at the limit because P
n

s
! 0 and

limE [P n

s
|V = 1]  1� c leading to a contradiction.

Step 7. If 1� g < r, then P
n

s
! Ps in distribution and Pr(Ps  p|V = v) is

atomless and increasing on [0, 1] for v = 0, 1. If c > 1/2, then limE [P n

s
|V = 1] = c

and limE [P n

s
|V = 0] = 1 � c. If c < 1/2, then limE [P n

s
|V = 1] = 1 � c and

limE [P n

s
|V = 0] = c.

If 1�g < r, then F
n

s
(E (1/2) |1) > s and

p
nF

n

s
(E (1) |1)/� = x < 1 by steps

5 and 6. For any y, pick ✓
n 2 E (1/2) such that

p
n
�
s � F̄

n

s
(✓n|V = 1)

�
/� = y.

This type’s bid is given by b
n

s
(✓n) ! �(y)

�(y+x)/(1 +
�(y)

�(y+x)) = e
yx+x2

2 /(1 + e
yx+x2

2 ) 2

(0, 1) by Step 4. Solving for y as a function of p using p = e
yx+x2

2 /(1 + e
yx+x2

2 ) we
find y = 1

x

⇣
ln p

1�p
� x

2

2

⌘
. Therefore, limPr(P  p|V = 1) = �((ln p

1�p
� x

2
/2)/x)

and limPr(P  p|V = 0) = �((ln p

1�p
+ x

2
/2)/x).

For type ✓
0 2 E (1/2), which wins an object in market s with probability

converging to one in both states, we find lim u
n(s, bn

s
(✓0)|✓0) = (1� limE[P n

s
|V =

1] � limE[P n

s
|V = 0])/2 = 0. Therefore, 1 � limE[P n

s
|V = 1] = limE[P n

s
|V =

0]. If c > 1/2, then we must have limE [P n

s
|V = 1] = c in order for types ✓ 2

E (1) to be indifferent between the two markets. If c < 1/2, then we must have
limE [P n

s
|V = 1] = limE [P n

r
|V = 1] and limE [P n

s
|V = 0] = limE [P n

r
|V = 0] = c
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for for types ✓ 2 E (1) and types ✓ 2 E (1/2) to be indifferent between the two
markets. Note that if x = 0, then limE [P n

s
|V = v] = 1/2 for v = 0, 1 and hence

we find x > 0 because c 6= 1/2.
Step 8. If 1� g > r, then P

n

s
! V and P

n

r
! V + c(1� V ).

We show limE[P n

m
|V = 1] = 1 for m 2 {r, s}, implies that limE[P n

s
|V = 0] = 0

and limE[P n

r
|V = 0] = c. If limE [P n

r
|V = 1] = 1, then limF

n

r
(E (1/2) |1) = 0 and

therefore limE [P n

r
|V = 0] = c. Moreover, E [P n

s
|V = 0] = 0 because otherwise

any type ✓
0 2 E (1/2), which wins an object in state V = 0 in market s with

probability converging to one, would receive a negative payoff.
We now show that limE[P n

m
|V = 1] = 1 for m 2 {r, s}. Steps 5 and 6 estab-

lish that F
n

s
(E (1) |1) > 0 for all sufficiently large n and thus limE [P n

s
|V = 1] 

limE [P n

r
|V = 1]. Moreover, if F n

s
(E (1) |1) ! 0, then F

n

r
(E (1) |1) ! 1 � g > r

and limE [P n

s
|V = 1] = limE [P n

r
|V = 1]. Since b

n

r
(✓) = 1 for ✓ 2 E (1), we

find limE [P n

r
|V = 1] = 1 and therefore limE [P n

s
|V = 1] = 1. Alternatively,

suppose limF
n

s
(E (1) |1) > 0. If lim(F n

s
(E (1) |1) + F

n

s
(E (1/2) |1)) > s, then

limE [P n

s
|V = 1] = 1 by Step 4 and therefore limE[P n

r
|V = 1] = 1. If

lim(F n

s
(E (1) |1) + F

n

s
(E (1/2) |1))  s, then limE[P n

s
|V = 0] = 0 because

limF
n

s
(E (1/2) |0) < s. However, if limE [P n

s
|V = 0] = 0, then limE [P n

s
|V = 1] =

1 because otherwise types in E (1/2) make positive profit in market s contradicting
Step 3.
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