B. ONLINE APPENDIX

B.1. Proofs of Pooling Calculations. Given a pooling bid by, let the ran-
dom variables L", G", and X" = L™ 4+ G" denote the number of losers, num-
ber of winners (or the number of objects left for the bidders that submit a bid
equal to by), and number of bidders that submit a bid equal to by, respectively.
Let L" = E[L"P" = b'],v, G* = E[G"|P" = b, v] and X" = L" + G".
Given these definitions, Pr[b} lose|P" = by, v] = E[L"/X"|P" = b} v] and
Pr(by win|P" = by, v] = E[G"/X"|P" = b7, v]. For any type ¢ that submits
the pooling bid, Pr(L" = Y] (ks + 1) = 0,v) = bi(i;n — 1 — ks,l—(éwe—L';;))

and Pr(X" = i|Y"(ks + 1) = 6,v) = bi(;n — 1 — ks,w). Therefore,

Frl)
n|vn an QZ,G |v i
(LY (k, + D = 00l = n ST e ll) (1 -k, — 1), BX"|Y2 (ko + 1) = 6,0] =
0.0;]] on  Fr(nAll) .
Rs 1gL @) = fen W(l—ﬂs 1/n) Pr(Y(ks+1) = 0|v)df andX™ =
F 69 v n
Joi n sF(nTH)”P (Y7 (ks + 1) = 0]0)de.

We prove a somewhat stronger version of Lemma A.2 in Lemma B.1 below.
Lemma B.1. Iflim Pr(P" > bp|v = 0), then

Fo@) (- F@v)
nF2 ([0, 07]10) (ks — F2(6]v))

lim Pr(b) lose|P" = by, V = v)/

S

Suppose lim Pr(P" = bj|v) > 0.

i. If lim F([07, 07]|v) > 0, then

—p’7p

lim Pr( win| P = b7, v) = lim S bt G510,

i, If \/n|FN 0" (v)|v) — F2 (0, |v)] — oo, then
P (18, 5] )v Pr(b) lose| P* = by, v) € (0, 00);

) 0m on]lv
S (GO

it Af /n|F3(0" (0)|v) — F{'(6,]v)] < oo, then
lim \/nF ([0, 05]|v) Pr(by lose|P* = by, v) € (0, 00);

—p’-p

iv. (0" (v)|v) — FHO)|v)| — oo, then
; ([Qp p1lv) n n n .
lim W Pr(b U}ZTL|P = bp,U) € (07 OO),

v If /] FE(0"(v)|v) = F(05]v)] < oo, then
lim /nF2([0,,05]v) Pr(by win|P" = b}, v) € (0, 00).

—p’7p

Proof of item i in Lemma B.1. Suppose that Y (ks + 1) = 0", 0" € [0, 67] and

PP

F" (0™|v) € (ks — €1, ks + €1). There are k, bidders with signals above §" and the



ks(F™(0lv)—F (67 v n
( an'v)( )) Also, Pr(G™ < (1—

)G |Y™ (ks +1) = 0", v) < e~ for any 0 € (0,1) by the Chernoff’s inequal-
(niliks)(f}gf%:‘)vgpg ") +1 because there are n—1—k, bid-
ders with signals below " and th; distribution of L™ is binomial and Pr(L" < (1—
S) LY (ks +1) = 0,v) < ¢=%In. The random variable X" and L" are indepen-
dent conditional on Y (ks 4 1) = 6. Moreover, Pr (b2 win|Y]" (ks + 1) = 6", v) =
E[G"/(L" + G")|Y™ (ks + 1) = 0", v]. The function G"/(L™ + G") is concave in

G™ and convex in L". Therefore, using Jensen’s inequality and then the Chernoff

distribution of G™ is binomial, hence G,, =

ity.'® Similarly, L, =

bound we obtain

G G
E[— [V (ks + 1) = 0", 0] < Qn < E[=—2— |V (ks + 1) = 0",
e ¥ ket 1) = 0" 0] < Qu < B[z [V (ke + 1) V]
(1—-6)G, g G 22
= —(1—e 2" < Q, < = = 2o,
G0+ L, LTSS e T

where Q,, = Pr (b2 win|Y (ks + 1) = 6", v). Our assumption lim F*([6},62] |v) >

=p’p
0 implies either G,, — oo or L, — oo or both. Taking the limits and noting that

§ is arbitrary we obtain lim Pr (b2 win|Y]" (ks +1) = 0",v) = lim GGJ;LE . Since

Fr(0™v) € (ks — €1, ks + €1) by assumption, we have

(ns—el—an (92\11))

Rs

lim ~ rotar ~ <lim@, <
Kst+e1—Fr (07 |v Fr(02|v)—kster — -
’is( 1%5*61( . )) + (1 - "15) (1:07’{2761 1
(ks+e—Fr (03 v))
lim ( - (:s| ) e o (@) :
ks—e1—FI (0 |v nes|v)—ks—er
Ks K)s‘:El ) + (1 o 55) ) 1p—fis+613

But lim Pr (F? (Y (ks + 1) |v) € (ks — €1, ks + €1) [v) = 1 for every e > 0 by the
LLN. Hence,

lim Pr (F] (Y] (ks + 1) [v) € (ks — €1, k5 + €1) [V (ks + 1) € [65,607] ,v) = 1.

=p’7p

18See Janson et al. (2011, Theorem 2.1).



Therefore,

(rs—er=Fy (031v))

lim — " e =
s (Hs+€1;i{1(9g|v>) + (1 — KS)F?(#B:ZM
lim Pr (bz wins|Y] (ks + 1) € [ng 6;} ’U)
(Ns+61*F§L(9;|”))
< lim - S

(nsquﬁ‘g(éﬂv)) FS"(Q"h))fﬁsfel .
Kste€l - + <1 B RS) lpfnerEl

Rs

Since this is true for each €; > 0, taking e; — 0 shows lim Pr (bg wins|P" = by, v) =

. rs—Fr (00
i s -
Proof of items ii-v in Lemma B.1. Further below we argue that the expected num-
ber of losers at the pooling bid satisfies 0 < liminf 5—% < lim sup% < oo if
lim /n|F7 (6™ (v)|v) — F' (02]v) | < oo, and satisfies 0 < liminfm <
lim sup m < 1if lim /0| F7 (0™ (v)[v) — F2* (65 |v) | = oo.

We will prove items ¢ and ii¢ using these bounds for L™ items iv and v follow

from an identical argument. We begin by proving the lower bounds in items
and iii. Note that Pr (L" > [ —1|P" = by, v) >1/2.19

Pr (b2 lose| P" = b, v) >

Ln n TN n n n TN n n
E{YM >["—1,P :bp,v] Pr(L" > L"—1|P" =}, v)

L —1 n In n n 1
ZE{ X |L" > L"—1,P :bp,v}§
Lm—1) /2
> ( )/ (by Jensen’s Ineq.)

E [X"|L" > L* — 1, P" = b7, v]

Note that E [X"|L" > L" — 1, P" = b2, v] Pr (L" > L" — 1, P" = b2|v) < E[X"|v] =
nF? ([05,07] |v). Therefore,
Pr (b2 lose| P" = b, v) >
(L"—1)  Pr(L">L"—1|P" =b2,v) Pr (P" =b2|v)
nFr ([0, 07] v) 2

—p’7p

YConditional on Y (ks +1) =0 € [QZ, 9;] and V = v, the number of losers L™ is a binomial
random variable. The median of the binomial differs from the mean by at most one. There-
fore, Pr (L™ > E[L"|Y(ks + 1) = 0,v] — 1|Y*(ks +1) = 6,v) > 1/2. In turn, this implies that

Pr (L™ > L" —1|P" = b7, v) > 1/2.



and Pr (b7 lose|P™ = b, v) nE? ([0, 07] Jv) > (L™ — 1)@. Taking limits

=p’7p
and substituting 0 < lim inf % < lim sup L\/%l < oo if

lim \/n|F? (6™(v)|v) — F2 (67 ]v) | < cojand

0 < lim inf Lr—1 < lim sup Lm—1 <1
nkn ([QZ,Q"(U)] |v) - nkn" ([QZ,@"(U)] |v) -

S

if lim /n | F? (6" (v)|v) — F* (67|v)| — oo delivers the lower bounds in items i
and 111.

We now establish the upper bounds in items éi and é4. If lim \/nF? ([0, 07] |v) €
(0,00), then lim \/n | E2 (6" (v)|V = v) — F (67|V = v)| < oo (because
lim Pr (P" = bZ|V = v) > 0) and the upper bound in item i is trivially sat-
isfied.  Suppose lim \/nF? ([05,00] [v) = oco. Pick 6 € (0,1) and let Y™ =
nF? ([0n,07] |v). Then

Pr [bZ lose|P" = by, U] <
E[L"X™ > (1 —6)Y™, P" = b, 0] Pr (X" > (1= 0)Y"|P" = b7, v)
(1-9)Yyn
+Pr (X" <Y"(1—-6)|P"=b],v).

However, E[L"|X™ > (1-0)Y™", P" = b2, v] Pr (X" > (1 = §)Y"|P" = b, v) < L™
Therefore,
Pr [0 lose| P" = b, v] Y™ - 1 y”

i _1_5+FP1~(X"g?”(l—é)\P”:bZ,v)

Chernoff’s inequality implies that lim Pr(X" < (1 — §)Y"|v) < exp(—&z%) and

s2yn
_ exp( —
hence Pr(X" <Y™(1 —6)|P" = b}, v) < W. Therefore,

Pr [b;} lose|]i" = bz,v] yn" < 1
Lr —1-9

lim

Substituting for the number of losers L™ now delivers the upper bounds in items
1 and 7.

We now show that 0 < lim inf\’i/—% < lim sup\i/—:i1 < oo if im \/n|F(0"(v)|v) —
F(8|v)] < oo, and 0 < liminfm m <1i
lim /71| B2 (6" (0)[0) — 2 (82]0) | — o

Pick any 6" € [0},67] and let a(6") := FI(0"(v)|v) — FI' (0"|v) = ks —

=p’7p

s

< limsup



Fm(0"|v). Recall that Pr(L" = i|Y (ks + 1) = 0",v) = bi (i;n — 1 — ky,p") and
E [L"Y (ks 4+ 1) = 6", v] = np(a(6™)) (1 — ks — L) where

Fr (00]v) — ks + a(0)

R e ()

Calculating the number of losers we find

In—— (1 e %) / np(a)dA(a)

where a” = a(0),), a" = a(fy), and
Aa) :=Pr (F] (Y (ks + 1)|v) — ks > a|P = b}, v) .

Integrating by parts and substituting p(a™) = 0, A(a™) = 0, and

(L-F(Gl) _ 1—kita”

pla) = (1 —ks+a)? - (1 — ks +a)?

delivers L"/n = (1 — Ky — %) (1 —ks+a") faa: (1—/;(52@203“' Hence,

=N

cn / Aa)da < L™ /n < 1_—“&/ Aa)da < / Ala)da.

1 —kKs+am Jon an

=N =n

where C™ = %
1-rs+an)? -

Pick any € > 0 and let a? be such that Pr(F? (Y (ks + 1)|v) — ks > a™|P" =
by,v) = 1—e. The central limit theorem implies that lim \/na} € (0, 00). Moreover,
lim y/n(a" — a") > 0 because Pr(F} (Y]'(ks +1)|v) — ks < a”|P" = b)), v) = ¢ for
each n. Therefore,

Aan AN

/a: Aa)da < /aj A(a)da < max{—a",0} +/Oa Aa)da

a a" f&ne’%dG
1 —¢€)da < Ala)da < —a",0 0
/a ( €) a_/an (a)da < max{—a }+Pr(P"=b;}|v)

1
Pr (P = b2[v) v21n

< max{—a",0} +




where er f(x) = \/i; [ e ¥ dt € [0,1/2] is the error function.

Note —a" = F" (0"(v)|V =v) — FI' (6,|V = v). Suppose that —lim/na" <
oo. If —lim+/na™ = §; < oo, then lim/n(a? —a™) = 0 € (0,00). The fact that
5—% € (\/ﬁC” f;: A(a)da, \/ﬁf;: A(a)da) and the bounds for f;: A(a)da together
imply that

C" (1 =€) Vn(d} —a")) <

ok

1
< max{y/na”",0} +
- {vna®,0} Pr (Pr = b2|v) V2

and

En Tn
0<(1—-¢€)C<liminf — <limsup —= <

v v

1
max{dy,0} +

Pr (P" = b2|v) V2r

< 00,

where C' = liminf C".
If —lim/na" = oo, then L™ € (n\/ﬁC’” faann A(a)da,nfaann A(a)da) and the
bounds for faa: A(a)da together imply that

—na" —na" Pr (P* = b2|v) av2mn
lim C" ((1 —€) ( Ny + 1)) < lim inf < lim sup <1
0<C(1—¢) <liminf < lim sup < 1.
—na® —na®

O

Proof of the calculation for the case where lim Pr (P” > bg]v) =0 i Lemma B.1.
As before, let X™ denote the random variable which is equal to the number

of bidders in the interval [QZ,@Z}. Redefine L™ to denote the random variable

which is equal to the number of losers with signals that exceed §;. Note that
E[L"YMk+1) >0V =v] = E[L"|L" >1,V =v]. Pick a § > 0, and let

SRR (A D]
d" = (1 —8)k, o)

and observe that lim j—% > 0. We will show
B L1 e (L"), V = 0]
P (0pv=v) (1-Fs(8,IV=v))
i ([0 031 [V=v) (xe—Fs (6,[V=0))

=1

lim
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and
. Pr (b2 loses|P™ = b2,V = v) .y

E[£5]|Lm € [1,d7],V = 0]

Ks (17138" (Q;HV:U))

1 E[Ln‘LnE[l,dn],U] — n __
Step 1. lim ==~—=="= =1, where a" = e T (g V=)

. Note

& ,

: bi(ks ;s p”
LmE L L" € [1,d"],v] = Zz;}@ ?( +-@ n;p")
> iy biks + 1, m;p")

where p" = F7*(7|v). Observe that

bi(k +i,n;p")

bilk+i,n; Kks) =
bi(k +1i,m; k) ik i, k)

Therefore o .
nlrn . Yo ir(n)'bi(ks +1,n; k)
E[L"[L" € [1,d"] v] = Sl 0 = 0B R
Zi:l T(n) bz(ks + 1, Nn; K’S)
where r(n) = i:gll:;,fg < 1. Pick any J < d". For each i < J,

(1—€")¢ ( o / ) < V(1= k) Rebi(k +14,n; k5) < (14 €")9(0)

1 — Kg) Rs
by the local limit theorem (Proposition A.1). Hence,
o () SLiirm) S i it +
(1— ) Vn 1 < Yo irt/nbi(k 4 i, n; k) <

p(0) " r(n)i = ST ri/mbi(k 4 i,m; k)
$(0) E?Lir(n)i




Evaluating the geometric series we find

¢ (\/Lﬁ) (1—€") (1 —r(n)’

6 (0) <1—7’(n)dn> T ) —Jr(n)J) <0<

6(0) (1 +€) 1—7r(n)® e ()
o (%) (l—r(n)‘]>(1—7"(”) ! ”d>

¢<\/iﬁ> (I—¢€) (1—7“(71)‘]
6(0) (1=r(m™) 1=

¢(0) (1 +€")

() (o)
where Q) = E [L"|L" € [1,d"],v].

Case 1. F(0,|v) < ks In this case, limr(n) = r < 1. Picking J = n'/* <

d" and taking the limit as n — oo we find imE [L"|L" € [1,d"],v] = = =
(1= 8,V =)

NS—FS(QPH/:’U)

Case 2. F,(0,v;i) = ks In this case r(n) < 1 for all n sufficiently large

but limr(n) = 1. Note that lim 1;;;? = 1. For any constant m, ma" < d" for

sufficiently large n because d"/a" — oo. Substituting 1/a" for 1 —r(n) and setting

AU ECE

= lim a™.

J = ma" for any arbitrary m we find

¢ (ma”//n) " (1 - (1= 1/@”)’”“”) —ma" (1-1/a")"" | _ _y
$(0) 1-(1- 1/a”)dn a®
< »(0) a"l + €n
= ¢ (mar/y/n) an
& (ma /i) (1 (- 1/an)m“”) —m(1 = 1/a)"" )
9(0) (1= )" A-<X
< _o0 (1+€)

& (mar /)

where X = w. Taking the limit as n — oo and noting that a™ — oo,

a"//n — 0and d"/a" — oo we obtain (1 — 1/a™)™" — exp (—m), ¢ (ma”/\/n) —
¢ (0), and (1 —1/a™)*" — 0 . Therefore

1 —exp(—m)—exp(—m)m <ImE[L"|L" € [1,d"],v;] /a™ < 1.

As m is arbitrary, taking the limit as m — oo we find E[L"|L" € [1,d"],v] /a™ —
1.



Step 2. We show Pr (L™ > d"|L" > 1,v) < Aexp (—d"/a") — 0 and Pr[Y"™(k+
1) >0 Y™ (k+1)] > 0,0 < Aexp (—d"/a") — 0 where A is an arbitrary positive
constant.

Following the procedure from the previous step, we find

n—k 1. . .
Pr (L > 'L > 1,0) = et MEL L)
Yo bi(k+1i,n; k)
P (1= ) (an + O — (1 - 1/an)")

am

(1= ep) (o + 82— (1~ 1/an)")

Aexp (—d"/a™)

where last inequality is a consequence of the fact that (1 — 1/a™)*is of the order
of exp (—d™/a™). Also, we have

Pr[Y"(k+1) > 0Y"(k+1) > 6),v] =
Pr(L™ e [1,d"]|L" > 1,v) Pr (X" < L"|L" € [1,d"],L" > 1,v)
+Pr (L™ > d"|L" > 1,v)Pr (X" < L"|L" > d", L" > 1,v).

Consequently

Pr[Y(k+1) > 02[Y"(k+ 1) > 07, 0] < Pr(L" > d"|L" > 1,0)+
Pr(X" < L"L" € [1,d"],L" > 1,v)

< Z?:_dkn bi(k 4+ i,n; k)

T bi(k +i,n k)

< Aexp (—d"/a") + exp (—0°d"/2) < Aexp (—d"/a")

+ exp (—6°d" /2)

where in the last inequality we use the fact that Aexp (—d"/a™) > exp (—§%d"/2)
and redefine the constant A without changing the order of the term.

Step 3. We now show

E, CAD) E[L"L" € |1, d"], 0] < Pr (b loses|L™ > 1,v) <
(1+6)Fm ([6,,02]|v) ks B T
I, (0v) EILrLn e[t d"], o] | Aexp (—d"/a")



We first give a lower bound for the probability of losing:

Pr (0P loses|L™ > 1,v) >

Ln
E {min [ﬁ’ 1] IL" € [1,d"] ,v} Pr(L™ € [1,d"]|L" > 1,v)

Note that Pr(L" € [1,d"||L™ > 1,v) — 1, thus

n

L
Pr (07 loses|L™ > 1,v) > E {min [ﬁ’ 1} |L" € [1,d"] ,v] (1—10y)
where §; is an arbitrarily small constant. The facts that min [L™/ X", 1] is a concave

function of X™ and Jensen’s inequality together imply that

E [min [L"/X" 1] |I" € [1,d"],v] > E [min {E[xfﬁ 1} " e [1,d"] ,v] |

By definition E [X™|L", v;] > d", therefore

E {min {E[X”ﬁ—nLn,vz]’ 1] L™ e [1,d"] ,U:| =
E [—E [X?ﬁzn,w] L e [1,d] ,v} _

F (6510
Fy ([65,65] Iv)

S —p’7p

L
E L™ e [1,d"
|:Ln+]€5| 6[7 ]7U:|

Noticing that Lf—ik is a concave function of L and applying Jensen’s inequality

implies that

E’n (QZ|U) E[L™|L™€[1,d"],v]

ks

Fr (16, 0] v) BT ERLAT
(" E[L™|L™€[1,d"],v
F (or)) (ELILELde

Fr([0n,0n]lv) 1402

—p’7p

E [min [L"/X™ 1] |L" € [1,d"] , v]

Y

Vv

where 0y := E[L"|L" € [1,d"],v] /k is an arbitrary positive constant. Note that
E[L"L" € [1,d"],v] /k — 0, therefore we can choose d, arbitrarily small for large

n. Therefore,

" (81v)
Fr (16 0z]lv) ks

s \[Zp>¥p

Pr (07 loses|L™ > 1,v) > (1 —0) E[L"|L" € [1,d"],v]



where 1 — 0 = min {1/(1 4 ds),1 — 01}.
We now provide an upper bound for the probability of losing:

Pr (0P loses|L™ > 1,v) <
E [min [L"/X" 1] |L" € [1,d"] ,v] + Pr (L" > d"|L" > 1,v) <
7 (g10) L

— ~ L™ € [1,d"],v| +
(1_5)Fs ([Qpﬂep]lv) L +k5

Pr(L" > d"|L" > 1,v) 4 exp (—6°d"/3) <
i (6510) E[L"[L" € [1,d"], ]

+ Aexp (—d"/a") + exp (—0°d"/3) <

(1 - 5) s ([QZ79177L]|’U) ks
Fo(0ow)  E[LYL* € [1,d"], ] .
(1= 0)F" ([0, 02]]0) k. + Aexp (—d"/a"™).

Fr([03.01v)

ECOn
is less than (1—0) (ks + 1) % with probability exp (—42d"/3) by Chernoff’s
inequality and the second follows because we showed that Pr (L™ > d"|L" > 1,v) <

the first inequality follows because E [X"|L" =i € [1,d"],v] = (ks + 1)

Aexp (—d"/a™) in step 2. To obtain the last inequality we use the fact
Aexp (—d"/a™) > exp (—d%d™/3) and redefine the constant A without changing
the order of the term. The lemma now follows as % exp (—d"/a"™) — 0 because

d"/a"™ — oo and because the constants § are arbitrary. ]

Lemma B.2. Fiz a sequence of bidding equilibria H and suppose that
lim /0| E™(07(1)|V = v) — F*(07(0)|V = v)| — oo. If there is pooling by pivotal
types, then lim Pr(P" < 3|V =1) =1 and lim Pr(P" < b3|V = 0) = 0.

Proof. Pooling by pivotal types implies that lim Pr (P” =0V = v) > 0 for v =
0,1. Suppose lim Pr(P" < b2V = 0) > 0 then lim \/n (F7" (65(0)]0) — F7 (62]0)) €
(—00,00).  Moreover, limPr (P" =02V =1) > 0 and lim/n|FM02(1)|V =
1)—F7(07(0)]V = 1| — oo together imply lim v/n (F? (6,(1)|1) — F (5]1)) = oc.
Along any sequence where the limit in the equation below exists, Lemma A.2 im-
plies that there is a constant C' such that

Pr (b" lose|P" = b7,V = 0) 1 C

Pr (b» lose| P" = b,V = 1) n Vi (Fr(0(D)[1) — Fr (QZH))

showing that pooling is not possible. Therefore, if there is pooling by pivotal
types, then lim Pr(P" < by|V = 0) = 0.
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Suppose lim Pr(P" < b7V = 1) < 1. Then
lim v/n (F{ (6511) — F7 (02(1)[1)) € (=00, 00).

Moreover, lim Pr (P™ = b2|V = 0) > 0 and lim /n|F7(02(1)|V = 1)—F(02(0)|V =
1| = oo together imply lim v/n (7 (62]0) — F7 (67(0)]0)) = co. Using Lemma A.2

we obtain

Pr (b" win|P™ = b2,V =1

lim _ ) <
Pr (b win|P™ = b2,V = 0)
n n nn 1
Clim 22 ([QQ’HP] 0) v =0
Fy ([65,65] 1) (Fy (6310) — F (65(0)]0))

again showing that pooling is not possible. Therefore, if there is pooling by pivotal
types, then lim Pr(P" < bp[V =1) = 1. O

B.2. Proof of Step 2 of Proposition A.1

Proof. Pick ¢ € [1/3,2/3], 0" € [2/3,1] and let § = (#',0”). Suppose that
6 € [0,0) U (2/3,0"] select market s and all others select market r. The ex-
pected payoff of a type 8 € £ (1) who submits a bid equal to b = 1 in market
s or in market r is given by uz(s|€ (1)) = G4(1/3|1) + ff//g(l — b2(0))dGs(0|1)
and u;(r|€ (1)) = G.(0'|1)(1 = ¢) + [2*(1 — b7(0))dG,(0]1) where G,,(0]v) =
Pr(Y" (k) < 0]V =v).2Y The expected payoff of type 1/3 (hence the payoff for
any 6 € £(1/2)) that submits a bid equal to b = b7?(1/3) in market s and the ex-
pected payoff of type 6’ that submits a bid equal to b = b7*(#’) in market r are given
by uz(s|€ (1/2)) = G5(1/3|1)/2 and uyg(r|€ (1/2)) = G.(0'|1)(1—c)/2—G,(0']0)c/2.
Notice that Pr(Y" (k) < 0]V = 1) and Pr(Y" !'(k,) < 6|V = 0) are bino-
mial distributions with parameters F, ([0, 2/3]|1)+ F,([2/3,0"]|1) and Fy([0,2/3]]0).
Therefore, the functions E[V Y, 1(k,,) = 0], G,,(0]v), and dG,,(0|v) are contin-

uous in & and 6”.

2If no types 6 € £ (1) UE (1/2) bid in market s, then E [V|Y*~!(k,) = 6] is not well defined.
In this case any bid b > 0 is optimal for § € £ (1/2) (and similarly in market r). Although this
situation never occurs in equilibrium, for completeness we assume that E [V|Ym"’1(km) = 9} =
1/2 in this case.
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Let 6 = (#,0") € [1/3,2/3] x [2/3,1] and define

—

e

303 i ug(s|€ (1/2)) = ug(r[€ (1/2))

D@ =42 ifugsl€ (1/2) > ugrl€ (1/2))
3 ifug(s|€(1/2)) <ug(rl€ (1/2))
and
5.1 if ug(rl€ (1)) = ug(rl€ (1))
Iy(0) =<1 if uz(s|€ (1)) > ug(r|€ (1))
2/3  if ug(s|€ (1)) < ug(r|€ (1)).

The correspondence I' = I'y x 'y is UHC, convex valued, compact valued and
therefore has a fixed point (6;,62) and this fixed point is an equilibrium. The
fixed point is an equilibrium because the correspondence I' is defined so that
all types 6 € £ (1/2) choose the market that gives them the highest payoff and if
0, € (1/3,2/3), then type 6; as well as all types 6 € £ (1/2) are indifferent between
the two markets. The situation is similar for types § € £ (1) and all § € £ (0)
choose market s by construction. Moreover, conditional on these choices, the
bidding function E [V|Y,""!(k,,) = 6] is a bidding equilibrium in market m, and
this bidding function delivers the payoffs used to construct the correspondence
I. O

B.3. An Equilibrium with Pooling by Pivotal Types Pooling by pivotal
types is not possible in the illustrative example as shown in the paper. Below we
construct an equilibrium where there is pooling by pivotal types by altering the
signal structure in the illustrative example as follows:
3(1—g=Z)(1-V) for 6 e€&(0):=][0,1/3)
fOIV)=<3(gV+(1-V)gl=Z) for 6 € £(1/2):=[1/3,2/3]
31—-9g)V for 0 € £(1) := (2/3,1]

where 1 < ¢ < 1/2 and g € [0,1]. Types 6 € £(1/2) are pessimistic, i.e., their
belief is m < 1/2 as opposed to 1/2 as in the illustrative example. The belief of
types in £ (0) and & (1) is equal to zero and one, respectively, as in the original

illustrative example.

Example B.1. Suppose that k, < g and Kk, > 1 — g. There exists an € > 0 such
that, for all sufficiently large n, there is an equilibrium where all types 6 € £(1)
select market r and all types € £(1/2) bid b, = ¢ + € in market s. In this

13



equilibrium, the price in markets s and r is equal to b, and c, respectively, with

probability converging to one.

Proof. Types 6 € £(1/2) never opt for market r because ¢ > 7 and all types
6 € £(0) submit a bid equal to zero in market s in any equilibrium. Pick € <
(1 —2c¢)/2. If all types 6 € £ (1/2) submit a pooling bid equal to b, in market s,
then their limit payoff at pooling is given by

Pr(V =110) (1 — b,) lim Pr(b, win|V = 1)—Pr(V = 0|0)b, lim Pr(b, win|V = 1)
=7mks (1 —2c—2€) /g >0

because the probability of winning conditional on P = b, converges to /g
and ksm/g(1 — m), in states 1 and 0, respectively. Alternatively, if this type in-
stead submits a bid greater than the pooling bid, then the type’s limit payoff is
(1—-b,)m— (1 —m)b, =m— b, <0 because she wins with probability converging
to one. Therefore, at the limit, each 6 € £ (1/2) strictly prefers the pooling bid
to any higher bid. Also, each 6 € £ (1/2) strictly prefers the pooling bid to any
lower bid because ks < g < g(1 — )7 implies that the probability of winning with
a lower bid converges to zero. The fact that each § € £ (1/2) strictly prefers the
pooling bid to any other bid at the limit implies that these types also prefer the
pooling bid for sufficiently large n. Also, types 6 € £ (1) opt for market r because
b, > c. O
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